
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Science
Computer Science Division

CS61B Fall 96
J.Canny

CS 61B: Midterm Exam II

This is an open-book exam worth 100 points. There are SEVEN
questions and TWELVE pages in the booklet. Write all your
answers in this booklet. You have 120 minutes, but to be sure
to finish on time, we suggest you budget N minutes for an
N-point question. Do not let yourself get stuck on one
question. Make sure you start every one. The easiest points
are at the beginning of the questions. Wait for permission to
start before opening the booklet. Good Luck!

Very important: Fill in this information now!

Your name: _____________________________ Login:

Section number: ____________________ Lab TA: _____________

For grading purposes only.

|Problem # | Possible | Score |
|__________|__________|________|

|1 | 10 | |
|__________|__________|________|

|2 | 15 | |
|__________|__________|________|

|3 | 25 | |
|__________|__________|________|

|4 | 10 | |
|__________|__________|________|

|5 | 5 | |
|__________|__________|________|

|6 | 15 | |
|__________|__________|________|

|7 | 20 | |
|__________|__________|________|

|Total | 100 | |
|__________|__________|________|

CS 61B, Midterm 2, Fall 1996

1

1. (10 points) The three below is a binary search tree (but
not an AVL tree). Show the result of doing Insert(20),
followed by Delete(50).

50 ______/ ______ / \ 19 80 _/ _ _/ _ / \ / \ 8 27 73 95 /
/ / \ / 4 22 60 79 88 \ 24

Draw the tree after Insert(20) here:

Draw it after Delete(50) here:

2. (15 points) The following are the contents of an array A,
going left-to-right from A[0] to A[12]:

A = {98, 60, 20, 45, 3, 16, 18, 23, 17, 1, 2, 8, 9}

This array represents a heap under the usual arrangement. Draw
the heap as a binary tree below.

CS 61B, Midterm 2, Fall 1996

2

Now draw the heap after an insert(35) operation:

Now draw the heap after a Getmax() operation:

3. (25 points) (Please read parts (a)-(f) of this question
carefully and answer all of them)

Its your first week working at "Don Corleons's Data Structures
with Class". An important customer needs a reliable
implementation of stacks and queues. You are eager to please
in your first assignment, and also aware that two other
employees who got behind deadline have mysteriously
disappeared recently.

Rather than writing a stack and queue implementation from
scratch, you decide to use a priority queue that you
implemented for an old course project. You realize that by
assigning the right priorities to data items when they are
inserted, you can make data come out in either a LIFO or FIFO
order.

Your priority queue class has the following prototype:

class Pqueue {

CS 61B, Midterm 2, Fall 1996

3

public:
void insert(int priority, dataType D); // Insert D with priority
dataType getmax(); // Get the max element and remove it
int empty(); // Return 1 if Pqueue is empty, 0 otherwise
Pqueue(); // Create an empty priority queue
};

and the insert definition says:

void Pqueue::insert(int priority, dataType D) {
// pre: priority is any integer, positive or negative...
....

Both your stack and your queue should have member functions

void insert(dataType D); // Insert data into the stack/queue
dataType getnext(); // Get & remove the next element (in LIFO/FIFO order)
int empty(); // Return 1 if stack/queue is empty, 0
otherwise

(a) (5 points) Write the class prototype for the STACK.
Include private data fields, and use a comment to say what
they are.

(b) (2 points) Write the class prototype for the QUEUE.
Include private data fields, and use a comment to say what
they are.

(c) (5 points) Write the getnext() member function for the
STACK. Briefly describe how you would change it if you were to
implement a queue.

CS 61B, Midterm 2, Fall 1996

4

(d) (5 points) Write the insert(dataType D) member function
for the STACK. Briefly describe how you would change it if you
were to implement a queue.

(e) (3 points) Assume that the Pqueue class is implemented
with a HEAP. Give the tightest big-O bounds you can for
getnext() for your QUEUE class, assuming N elements in the
queue. Briefly explain your answer.

(f) (5 points) Assume that the Pqueue class is implemented
with a HEAP. Give the tightest big-O bounds you can for
insert() for your QUEUE class, assuming N elements in the
queue. Briefly explain your answer.

4. (10 points) The Quirk are a feisty, subatomic race of
people who run the Universe below one Angstrom unit. Some
people argue that Quirks don't exist, because they have no
mass, and have extremely short lives. But inestimable numbers
of Quirks live, work, create art, make war, love and die in a
typical sand grain in a single pico-second, and they resent

CS 61B, Midterm 2, Fall 1996

5

that humans (especially Werner Heisenberg) ignore them.

Quirks come in three types, A, B, and C. Quirks react
instantly when they encounter a Quirk of another type:

 An A Quirk and a B Quirk react to produce a C
 a B Quirk and a C Quirk react to produce an A
 a C Quirk and an A Quirk react to produce a B

In an effort to enhance public understanding of Quirks, you
are commissioned to write a simulator for Quirk behavior. You
decide to use three different classes, one of each Quirk, and
to overload the + operator to represent a Quirk-Quirk
reaction.

(a) (3 points) Write a class definition for *one* type of
Quirk.

(b) (5 points) Write code for *one* type of Quirk-Quirk
reaction, e.g. overload the + operator so that B + C evaluates
to an A Quirk. Your code for this one reaction should allow
both orders of the arguments, i.e. B + C and C + B.

(c) (2 points) Are the results of each Quirk addition known at
compile-time? Explain briefly.

CS 61B, Midterm 2, Fall 1996

6

5. (5 points) BRIEFLY describe how to use a Data Display
Debugger like DDD to determine whether a list structure is
circular.

6. (15 points) The tree below is almost an AVL tree. Find the
out-of-balance node N, and circle it. Choose an edge in the
tree to rotate, to restore the tree's balance. The edge will
include N and one of its children. Highlight this edge by
shading it.

57 ________/ ________ / \ 23 80 ___/ ___ ___/ ___ / \ / \
12 34 65 90 _/ _ _/ / \ / 5 17 61 \ 8

Now draw the tree after the rotation:

7. (20 points) Listed below are three sorting functions, name
Alice, Bob and Chuck. Each function has a helper function just
below it. For this question you have to understand each of
these three functions and answer the questions on the next
page. You should find it useful to read those questions before
studying the code. Try simulating each program!! It's probably
easier than trying to understand them by reading alone. If
they look strange, try to remember the recursive approach to
problem solving, or how you programmed in CS61A...

All sorting functions satisfy the specification:
// pre: A is an array of integers. left is the index of the
first element
// in the subarray to be sorted, and right is index of the

CS 61B, Midterm 2, Fall 1996

7

last element.
// post: A contains the same elements and
// A[left] <= A[left+1] <= A[left+2]... <= A[right]

void Alice(int * A, int left, int right) {
 if (right <= left) return;
 Alice(A, left, right - 1);
 Alice_helper(A, left, right - 1, A[right];}

void Alice_helper(int * A, int left, int right, int elt) {
 if (right >= left)
 if (elt <A[right]) {
 A[right + 1] = A[right];
 Alice_helper(A, left, right - 1, elt);
 return;}
 A[right + 1] = elt;
 return;}

void Bob(int * A, int left, int right) {
 if (left >= right) return;
 int elt = A[right];
 int index = Bob_helper(A, left, right, elt);
 Bob(A, left, index-1);
 Bob(A, index, right);
 return;}

int Bob_helper(int * A, int left, int right, int elt) {
 if (left >= right) return left;
 if (A[left] <elt) return Bob_helper(A, left + 1, right, elt);
 if (A[right] > elt) return Bob_helper(A, left, right - 1, elt);
 swap(A[left], A[right]); // This swaps A[left] and A[right]
 return Bob_helper(A, left + 1, right - 1, elt);}

void Chuck(int * A, int left, int right) {
 of (left >= right) return;
 int index = Chuck_helper(A, left, right);
 swap(A[left], A[index]); // This swaps A[left] and A[index]
 Chuck(A, left + 1, right);
 return;}

int Chuck_helper(int * A, int left, int right) {
 if (left >= right) return left;
 int index = Chuck_helper(A, left + 1, right);
 if (A[left] <A[index])
 return left;
 else
 return index;}

CS 61B, Midterm 2, Fall 1996

8

(a) (6 points) Each of these sorts is a familiar sort, i.e.
its one of: Insertion Sort, Selection Sort, Quicksort,
Heapsort, Bubblesort, Mergesort or Radix Sort.
Write down the familiar sort name for each program:

Alice___

Bob___

Chuck___

(b) (6 points) What is its BEST-CASE runnning time for each
sort?

Alice___

Bob___

Chuck___

(c) (6 points) Which of the programsa above are STABLE? Say
YES if it is stable, NO otherwise:

Alice___

Bob___

Chuck___

(d) (2 points) One of the programs above that is NOT stable
can be made stable by changing a single line of the program.
Give the name of the program, and give the changed program
line:

Program Name____________________________________

CS 61B, Midterm 2, Fall 1996

9

Changed Line____________________________________

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contactmailto:examfile@hkn.eecs.berkeley.edu

CS 61B, Midterm 2, Fall 1996

Posted by HKN (Electrical Engineering and Computer Science Honor Society)University of California at BerkeleyIf you have any questions about these online examsplease contactmailto:examfile@hkn.eecs.berkeley.edu10

mailto:examfile@hkn.eecs.berkeley.edu

	CS 61B, Midterm 2, Fall 1996

