
CS61B, Fall 1995
Midterm #2
K. Yelick

Problem #1
a. (2 points) Show the binary search tree (BST) that would result from applying the following operations to
the given BST: insert(6), insert(8), delete(10), delete(7). (Just show the final BST.)

b. (2 points) Given below is a hash table with space for 5 entries. Assume we are using the (naive) hash
function: key % 5. What will the table look like after the following 4 operations, assuming we are using
chaining: insert(2), insert(8), insert(17), insert(12).

c. (2 points) Redo the previous problem assuing we are using linear probing

d. (2 points) Show the value of the heap that would result after inserting the following elements in this order:
19, 4, 20, 12, 18, 3, 32, 5.

e. (3 points) The list class is built using listNode objects. Allysa P. Hacker has decided to write a
destructor for the listNode objects, using the code given below. Will this function work? If not, describe
what is wrong.

//Precondition: this != NULL. //Postcondition: Delete this node and all nodes accessible through it. listNode::~listNode() { assert (this != NULL); listNode* list = this; while (list != NULL) { tempPtr = list; list = list->Next; delete tempPtr; } }
f. (2 points) Draw an inheritance hierarchy for the following classes:

class B : public C {
 ...
};
class C {
 ...
};
class A : public D {

CS61b, Midterm #2, Fall 1995

 CS61B, Fall 1995 Midterm #2 K. Yelick 1

 ...
};
class D : public C {
 ...
};
Problem 2. (6 points)

 Henry Pointerdexter is modifying his 61b Ataxx project to play the game of tic-tac-toe. The game of
tic-tac-toe is played on a 3x3 board using white and black pieces. At each step, a player may place a piece on
any open square. The goal of the game is to get three of your pieces in a row: left-right, up-down, or
diagonally. The key function in Henry's MachinePlayer class is a recursive function that looks for the best
move by doing backtracking search of the "game tree." Below is a sketch of his code. (There is nothing tricky
here, this should look similar to your project 1 code and our solution.)

Search (Board *board, int &bestScore, Move &bestMove, int level) if this is the last level or the game is over bestScore = evaluate the current board; else currentColor = (level % 2 == 0) ? myColor : opponentColor; for (i = 0; i< board.dimension(); i++) { if board->emptypos(i,j) newBoard = pointer to a copy of *board; newBoard->addPiece(currentColor, i, j); Search(newBoard, newScore, newMove, level+1) if newScore is better than bestScore bestScore = new Score; bestMove = move to i,j;

a. (2 points) Draw the two boards that would be passed to the Search function the next two times it is
called, assuming that it is initially called by the white player with level = 0 and board set to input
board below.

b. (2 points) Tic-tac-toe involves no flipping or jumping: once a piece is placed, it will remain in that position
throughout the game. How can this fact be used to optimize the search process?
c. (2 points) Henry has noticed that some boards come up over and over again from a different order of
moves. He would like to save the search results in a hash table so that he can reuse it later. What should he
use as keys in the hash table?

What item (or items) should he use as the value associated with each key in the hash table?

Problem 3. (13 points)

 A threaded tree is a variation on a binary tree that makes use of the null pointers that exist at the bottom of
the tree. If a node has no left child, the left child pointer will be used to point to the node that comes before it
in an inorder traversal (the inorder predecessor). If a node has no right child, the right child pointer will be
used to point to the node that comes after it in the order traversal (the inorder successor). (The predecessor
pointer is null for the first node in the inorder traversal and the successor pointer is null for the last node in
the inorder traversal.) Assume that we have modified the bstClass from Carrano to implement a threaded
tree. Although several changes have to be made to the code, the only change to the data structure itself is the
addition of two new boolean values in each treeNode:

CS61b, Midterm #2, Fall 1995

Problem #1 2

struct treeNode
{ treeItemType Item;
 treeNodePtr LChildPtr, RChildPtr;
 bool leftIsPred;
 bool rightIsSucc;
};

If leftIsPred is true, then the node has no left child. The LChildPtr therefore points to the inorder
predecessor or is null if none exists.

•

If rightIsSucc is true, then the node has no right child. The RChildPtr therefore points to the
inorder successor or is null if none exists.

•

a. (3 points) Add the predecessor and successor pointers to the following picture. Label each predecessor with
"P" and successor with "S," so we can tell which ones are which.

For parts b and c, you are to write part of an inorder traversal iterator like the one you wrote in Homework 7
(see appendix). Because of the additional pointers in the tree, we can eliminate the stack and instead use only
a single "current" pointer within the iterator. For both functions, you may use helping functions, but show all
of your code.

class bstInorder { public; // as before private; bestClass & theTree; // a reference to the tree treeNodePtr current; // the current node in the traversal };
b. (5 points) Write the constructor for the bstInorder class. (The constructor should initialize the iterator so
that other operations work correctly without first calling init().)
c. (5 points) Write operator++ for the bstInorder class.

Problem 4. (8 points)

Ben Bitdiddle needs a data structure with the following operations.

class SomeDateStructure { public: // Constructors and destructor omitted int Insert (int); //insert an element int FindMin (); //return the minimum element (without removing) int FindMax (); //return the maximum element (without removing) void RemoveMin(); // remove the minimum element void RemoveMax(); // remove the maximum element // private fields omitted };

 He wants both FindMin and FindMax to work in O(1) time. He also want Insert, RemoveMin and
RemoveMax to work in O(log n) time. His idea is to use two heaps, one (called MaxHeap) ordered with the
larger elements at the top and one (called MinHeap) ordered with the smaller elements at the top. Both heaps
are represented as vectors/arrays of HeapNodes.

CS61b, Midterm #2, Fall 1995

Problem 3. (13 points) 3

a. (2 points) Fill in possible values for minHeap and maxHeap that contain the items 21, 22, 23, and 24.
(There may be more than one correct answer.)

minHeap maxHeap

b. (6 points for part b-d combined) Consider the problem of deleting the minimum element from your answer
to part a. To do this in O(log n) time, you need to asdd some information to each HeapNode beside the item.
What other field(s) do you need? Give a name, type, and a few words to describe each field.
c. During insertion and removal, it is often necessary to move a node in a heap. How will you update the
other heap in this case?
d. List the steps involved in removing the minimum element (21) from the heap in part a.

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contact examfile@hkn.eecs.berkeley.edu.

CS61b, Midterm #2, Fall 1995

Problem 4. (8 points) 4

	CS61b, Midterm #2, Fall 1995

