
Fall 2003 CS61B Midterm (50/300 points)

;;;;
Meta
;;;;

GS = Grading Standard

We've tried to include the common errors and grading standard for
every question.

;;;;;;;;;;
QUESTION 1
;;;;;;;;;;

GS: The T/F questions were worth 1/2 point each. You got a -1/2 point
 if you answered a T/F question incorrectly. The fill-in-the-blank
 questions were worth 1 point each.

a) F

b) F

c) T

d) T

e) 4^h

f) 3

;;;;;;;;;;
QUESTION 2
;;;;;;;;;;

GS: 5 points total, but everyone received full credit for parts d) and e).

a) 1 point for drawing the correct heap after removing 20

 31
 / \
 32 35
 / \
 38 45

b) 1/2 point

 | 20 | 31 | 35 | 38 | 32 | 45 |

c) 1/2 point

1

 | 31 | 32 | 35 | 38 | 45 | |

d) 1.5 points

 This question was impossible to answer because binary heaps
 must be complete. With the numbers provided, you could not
 form a complete binary search tree, thus you couldn't form a
 max binary heap. Everyone received all the points for this question.

e) 1.5 points

 This question was thrown out as well because of the same reason as
 (d). It could be impossible to make both a balanced BST and a max
 heap from a given set of data. Everyone received the max points for it.

;;;;;;;;;;
QUESTION 3
;;;;;;;;;;

GS: 4 points

Each part was worth 1/2 point.

a) >
b) >
c) =
d) =
e) =
f) <
g) =
h) =

;;;;;;;;;;
QUESTION 4
;;;;;;;;;;

GS: 2 points, 1 point for each part.

a) For any number n, all numbers n + 5*i where i is a positive integer >= 0
 will be mapped to the same location as n.
 For example: (5, 10, 15) or (7, 12, 17)

b) g(n) is better because f(n) can't ever map to an even number. f(n) effectively
 reduces the possible buckets by half.

;;;;;;;;;;
QUESTION 5
;;;;;;;;;;

2

GS: Part a) was worth 2 points with each blank being worth 1/2 point. If you
 forgot to put object()'s constructor call, you were only penalized 1/2 point
 one time.

 Part b) was worth 4 points total. 1 point was taken off for each incorrect
 blank up to 0 points total for the question.

a) i. Dog, Animal, Object
 ii. Rabbit, Animal, Object
 iii. Poodle, Dog, Animal, Object
 iv. None

Common errors: Almost everyone forgot to put the Object constructor. There were
a handful of people that caught this though.

b) i. Animal
 ii. Rabbit
 iii. Dog
 iv. Dog
 v. Rabbit
 vi. CT

Common errors: Most people didn't know that vi. will cause a Compile-time exception.
This happens because Animal doesn't define a hop() method and thus you must cast
the variable b to a Rabbit before you can call that method on it.
 i.e. ((Rabbit)b).hop();

;;;;;;;;;;
QUESTION 6
;;;;;;;;;;

GS: Part a) was worth 3 points. You either got the entire 3 points or nothing.
 For part b), you were given the full 1 point if you wrote out the in-order
 traversal for the tree you drew in part a).

 Part c) was worth 1 point with no partial credit.

a) 88
 /
 6
 / \
 1 30
 \ /
 3 10
 / \ \
 2 5 20
 /
 4

Common errors: A lot of people didn't verify that their tree was in fact a BST.
By looking at your tree, you should never have a larger number to the left of

3

a smaller number and vice-versa. An examples of what people put is:

 30
 / \
 10 20 <- smaller than 30

b) 1, 2, 3, 4, 5, 6, 10, 20, 30, 88

The in-order traversal of a BST are the numbers from lowest to highest. But to
get full credit for this problem, you must put the in-order traversal of the
tree you drew in part a). So if you drew the wrong tree, you must put the
in-order traversal of that tree. If you drew the wrong tree, but gave the
in-order traversal for the correct tree, we only took off 1/2 point.

c) 10
 / \
 4 30
 / \ / \
 2 6 20 88
 / \ /
 1 3 5

Common errors: A lot of people drew a minimal height tree, but didn't make
it *complete*.

;;;;;;;;;;
QUESTION 7
;;;;;;;;;;

GS: 8 points. The grading for this is similar to question 3 on the Quiz.

public Object dequeue() throws EmptyQueueException {

 if(empty()) throw new EmptyQueueException();

 Object o = pop();
 if(empty()) return o;

 Object front = this.dequeue();
 enqueue(o);
 return front;
}

* -1/2 pt for the first instance of a small compile-time error

Examples:

- Omitting parenthesis in function calls (eg dequeue vs
 dequeue()... only deducted for the first time).
- Misspelled methods

4

* -1 for first instance of severe compile-time errors

Examples:

- Forgetting to return a value (if you declared the function non-void)
- Not declaraing variables (such as the Objects o and front)
- Calling dequeue recursively and passing it 'this' or something else despite
 the fact that it takes no parameters

* -1 for all instances of run-time errors/statements that generate
 the wrong output.

;;;;;;;;;;
QUESTION 8
;;;;;;;;;;

GS: 16 points total

The answers for part a) and b) below are broken up into 4 columns: the # points given, the datastructure specified, the big-O
using that datastructure, and the properties that must hold to use that ds and achieve that running time.
For each of the three methods, we've outlined the credit you would receive given the following answers. Only
the solutions that used the most appropriate datastructures in a way that maximized the efficiency received all 3 points
for that method.

For example, if I put the following answer for lookupByName():

 Method DS Worst Case Efficiency Properties
lookupByName() 3 O(log n) Each student is put into a balanced BST using the name as the key

Then by looking at the following table, I see that 2 points were awarded for this answer. This is because it would be more
efficient to use a Hashtable with the student name, a string object, as the key. If I used a Hashtable, my expected running
time would be O(1) as opposed to O(log n) with a BBST.

There was a constraint added during the exam that your nextElement() method of the enumeration returned by sortByScore() must
run in 0(1) time.

Problem 8a

 # pts given datastructure big-O properties
sortByScore
 3 Vector (1) O(1) Maintain in sorted order
 ? O(n) Need to clone to prevent mutation (not really -- could wrap in immutable class)
 0 O(n log n) Unsorted
 0 O(n^2) Unsorted
 3 Linked List (2) O(1) Sorted
 ? O(n) Need to clone to prevent mutation (not really -- could wrap in immutable class)
 0 O(n log n) Unsorted
 0 O(n^2) Unsorted

5

 3 Balanced tree (3) O(n) Do an inorder traversal and copy all to new vector
 1 O(log n) Inorder traversal done incrementally; need to fill up queue with left path
 1 O(log n) Explain that it is O(log n) work to nextElement (not allowed)
 0.5 O(log n) Don't say that you need to do an inorder traversal
 0 Hashtable (4) * *
 0 Stack (5) * *
 0 Queue (6) * *
 2 Heap (7) O(n log n) Copy heap, O(n), remove all, O(n log n)
 1 O(n) Copy heap, and do heap removes during nextElement (not allowed)
 0 O(1) Forget to copy, enumeration breaks data structure
 ? O(1) nextElement moves from one heap to the other in O(log n), not allowed
 0 O(log n) *

lookupByName
 3 Hash Table (4) O(1) * Anything true
 3 O(n) Bad hash code (but it's String hashcode, which is great!)
 1 O(n)
 2 Balanced Tree (3) O(log n)
 3 Vector (1) O(1) Write your own hash table in the vector (store linked lists there)
 2 Vector (1) O(log n) Sorted, Binary search
 0 Others (2,5-7) * *

studentsWithScoreAtLeast
 3 Vector (1) O(1) Maintain in sorted order, stop when you get to the argument (-0.5 if missing the stop)
 1 O(n) Sorted with linear search for first element
 1 O(n) Unsorted, copy elements above argument into another vector
 1 O(log n) Binary search in first nextElement
 0 O(n log n) Unsorted
 0 O(n^2) Unsorted
 3 Linked List (2) O(1) Sorted in descending order or doubly-linked, stop when you get to the argument (-0.5 if missing the stop)
 1 O(n) Sorted with linear search for first element
 1 O(n) Unsorted, copy elements above argument into another vector
 0 * Unsorted
 1 Balanced tree (3) O(n) Do an inorder traversal get everything out and put it in a sorted vector
 3 O(log n) Walk down to starting element (or bottom), put nodes into a queue if you went left
 1 O(log n) Explain that it is O(log n) work to nextElement (not allowed)
 0.5 O(log n) Insufficient explanation
 0 Hashtable (4) * *
 1 Stack (5) O(n) Pop all off, push all back on to preserve "this", and insert >= arg ones into a vector (or whatever)
 0 Stack (5) O(n) Insufficient explanation
 1 Queue (6) O(n) Dequeue all, enqueue all back on to preserve "this", and insert >= arg ones into a vector (or whatever)
 0 Queue (6) O(n) Insufficient explanation
 0 Heap (7) * * (A heap can only be "traversed" by pulling everything out, which is O(n log n), worse than stack/queue...)

Problem 8b
lookupByLogin
 3 Hash Table (4) O(1) Only if you didn't use it in part 8A (but most people did)
 3 Vector (1) O(1) Direct mapped table: Use 26*login[0]+login[1] to index a vector of size 26*26
 2 Balanced Tree (3) O(log n)
 2 Vector (1) O(log n) Sorted vector with binary search
 0 Others (2,5-7) * *

6

For part c), the worst case efficiency is specified below depending on the datastructure you used:

Problem 8c
 1 O(n) If sorted vector or if they think Hash is O(n)
 1 O(log n) If BBST

For part d), some people didn't realize that although you could only use 1 type of datastructure, you could create multiple instances of it and use
each instance for a different purpose. For example, if I chose a sorted vector, I could keep one instance of it using the student name as the key
I sort on and make another instance with the student's score as the key. Then my running times would be O(1) for sortByScore, O(log n) for lookupByName,
and O(1) for studentsWithScoreAtLeast. Only a sorted vector and BBST provided good efficiency for all three methods.

 # pts datastructure reasoning
Problem 8d
 3 Sorted Vector (1) Can do all lookups in O(log n), all enumerations in O(1) and all inserts in O(n)
 3 Balanced BST (3) Can do all lookups in O(log n), all enumerations in O(n) and all inserts in O(log n)
 0 * Makes no logical sense to choose

7

	fa-2-sol.html

