
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2003 Instructors: Dan Garcia and Kathy Yelick 2003-09-22

J CS61B Quiz J
Personal Information

Last name

First Name

Student ID Number

The name of your TA (please circle) David Igor Ram Rishi

Name of the person to your Left

Name of the person to your Right

All the work is my own. I had no prior knowledge of
the exam contents nor will I share the contents with

others in CS61B who have not taken it yet. (please sign)

Instructions
• Question 0 (-1 points if done incorrecty)

involves filling in the front of this page and
putting your name on every following page.

• We’ll refer to the Account class on the back
page of your exam.

• In the case of all TRUE & FALSE questions,
you will be graded #right – #wrong (i.e., it
may be better to leave a question blank than to
circle an incorrect answer).

• You have 50 minutes to complete this quiz. The
quiz is open book and open notes, no computers.

• Partial credit may be given for incomplete
answers, so please write down as much of the
solution as you can.

• Please turn off all pagers, cell phones and
beepers. Remove all hats & headphones.

Grading Results

Question Max.
Pts

Points
Earned

Difficulty
(0=easy
5=hard)

Fairness
(0=fair

5=unfair)

0 0/-1

1 7

2 8

3 10

Total 25

Please comment above & below:
Write the difficulty and fairness ratings
above and please add additional comments
fl on the left here.

Page 2 of 6

Question 1 : Easy Quickies… (7 points, -1 for each wrong answer… min=0)
Fill in the blanks below with the value that would be printed by the corresponding
println statment. If the program will produce a compile-time (CT) or run-time (RT)
error, fill in CT or RT. Assume previous errors have been corrected when looking at
later ones (i.e., we’re not intending any CT or RT errors to cascade).

a) int i = 1;
 int j = i;
 i = 2;
 System.out.println(j); Ë _____________________

b) String s = "one";
 String t = s;
 s = "two";
 System.out.println(t); Ë _____________________

c) String s = "ABCDEF";
 System.out.println (s.substring(1,5).substring(1,3)); Ë _________
 System.out.println ("61".concat(s.substring(s.length()-4))); Ë ________

d) System.out.println("Perfect quiz: "); Ë Perfect quiz:
 System.out.println(7+8+10); Ë ______________
 System.out.println("Realistically: "+6+1+0); Ë Realistically: ________

e) public static boolean betterEquals(String w1, String w2) {
 for (int i=0; i < w1.length(); i++) {
 if (w1.charAt(i) != w2.charAt(i)) return false;
 }
 return true;
 }

 // in main
 String s1 = new String("61B");
 String s2 = new String("61B");
 System.out.println(s1 == s2); Ë ________
 System.out.println(s1.equals(s2)); Ë ________
 System.out.println(betterEquals("61B","CS61B")); Ë ________
 System.out.println(betterEquals("CS61B","61B")); Ë ________
 System.out.println(betterEquals("61B","61B rocks")); Ë ________
 System.out.println(betterEquals("61B rocks","61B")); Ë ________

f) private static void changeValues(int i, String s, Account a) {
 i++;
 s = "B";
 a.deposit(5);
 a = new Account(88);
 }

 // in main
 int score = 9;
 String grade = "A";
 Account account = new Account(100); // …from Account class on the last page
 changeValues(score, grade, account);
 System.out.println(score); Ë ________
 System.out.println(grade); Ë ________
 System.out.println(account.balance()); Ë ________

 We’ve staggered
the answer blanks below to give you more writing room.

Name: ______________________________________

Page 3 of 6

Question 2 : Medium quickies (8 points)
These ask you to either circle the correct answer, fill in blanks, or both.

a) You have implemented the following Bank class:

public class Bank {
 private Vector myAccounts;
 private int maxIndex; // index of the account with the most money
 /** Creates a new Bank with the given Accounts.

 * @arg accts (1)
 * @requires accts is a Vector. (2)
 * @return a new Bank Object. (3)

 */

 public Bank (Vector accts) {
 myAccounts = accts;
 maxIndex = 0; // find richest account and save index
 for (int i = 0; i < myAccounts.size(); i++) {
 if (((Account) myAccounts.get(i)).balance() >
 ((Account) myAccounts.get(maxIndex)).balance()) {
 maxIndex = i;
 }
 }
 }

 /** Find the account with the most money in this Bank.
 * @requires accts is a Vector (4)
 * @modifies myAccounts (5)
 * @return myAccounts.get(maxIndex) (6)

 */
 public Account richest() { return (Account) myAccounts.get(maxIndex); }
}

Your intention was to write the strongest possible specification for this code, to have as
few requirements on the caller as possible. There are some problems with your
specification. The table below shows each specification tag above with a list of
possible problems. For 1-6, list the letters of all problems that apply. In the last two
lines, give the names (not full specs) of any tags that are missing from the two
methods. In all cases, you may have 0, 1, or more answers per blank.

(line #) TAGs PROBLEMS

(1) @arg _____________

(2) @requires _____________

(3) @return _____________

(4) @requires _____________

(5) @modifies _____________

(6) @return _____________

A) The tag is named incorrectly.

B) The tag contains unnecessary information.

C) The tag contains information that reveals
the implementation.

D) The tag is missing some information.

E) The tag should not be present.

(7) Bank is missing tags: _______________________________________

(8) richest is missing tags: _______________________________________

Page 4 of 6

b) The implementation has a representation invariant that
myAccounts.get(maxIndex) has at least as much money as any other account in
myAccounts. Your lab partner claims that your constructor provides a hole in your
abstraction that a user could exploit to break the invariant. You propose to fix the
problem by replacing Vector throughout the code by the following FixedVector
class:

 public class FixedVector {
 private Vector myVec;
 public FixedVector (Vector v) { myVec = v; }
 public Object get(int i) { return myVec.get(i); }
 }

Your partner says there are still problems. Is she right? Answer Yes/No and list as
many of A-F as support it. Answer: ___________ Reasons: _______________________

No (no problems) Yes (still problems)
A) FixedVector is immutable. D) richest modifies private variables.
B) myAccounts is never returned. E) Vector (passed to FixedVector) is mutable.
C) FixedVector makes a copy of the
 Vector.

F) Account is mutable

c) We would like to be able to create Accounts starting with an initial deposit in Euros
† (for this example let’s say 1 Euro † = 2 US $). We could modify the Account
class (code on the last page) by adding another constructor as so:

public Account (int euro) { this(2 * euro); } // 1 Euro=2$, so 2$ per euro

What happens when we add this constructor into our class? Circle one answer.
1) CT error because ___.
2) RT error because ___.
3) Infinite loop because the units are still euro, so it’ll call itself (with each call

doubling the input) forever.
4) It will compile and run, but it doesn’t make sense to mix dollars this way.
5) It will work fine; bring on the Euros!

d) v is a Vector whose elements, if any, are all Integers. Given the following code,
choose the answer(s) that best fits an analysis of it. Circle all that apply, and fill in
the blank(s) if appropriate.

 Enumeration e = v.elements();
 for (Integer i = (Integer) e.nextElement() ;
 e.hasMoreElements() ;
 i = (Integer) e.nextElement())
 System.out.println(i);

The program will…
1) crash for any input.
2) never crash.
3) crash only when the input is ___.
4) print all of the elements.
5) print none of the elements.
6) print all but ___ of the input.

Name: ______________________________________

Page 5 of 6

Question 3 : How much money does my family have?… (10 points)
In Lab 2 you created a parent account (code on back page), which may itself have a
parent account, and so on. You would like to find out the total amount in all of these
accounts (including yours). You augment the Account class (on back) to add two
almost-identical recursive methods: the no-argument, non-static familyFortune and
the one-argument, static familyFortuneStatic which each return the total amount in
all of your linked family’s accounts added together. You also must show how we would
find out (from outside the class) the family fortune starting with an Account called me.
You may only fill in 1 statement per blank (some might be empty). Each method
must be an individual solution; your non-static method may not call your static
method and vice-versa.

public _______________ familyFortune () { // non-static

 if (___) { // base case test

 return (_______________________________________); // base case

 } else {

 return (_______________________________________); // recursive case
 }

}

// Now, show a call to this method using the Account me (from outside Account)

 ____________________________me ______________________________

public static ___________ familyFortuneStatic (________________) { // static

 if (___) { // base case test

 return (_______________________________________); // base case

 } else {

 return (_______________________________________); // recursive case
 }

}

// Now, show a call to this method using the Account me (from outside Account)

 ____________________________me _______________________________

Page 6 of 6

/* Account.java – from the Lab 2 solution with some modifications.
 * You may detach this page from your exam. */

/** This class represents a bank account whose current balance is a
 * non-negative amount in US dollars ($). */
public class Account {

 /** Construct an account with the given initial balance.
 */
 public Account (int balance) {
 this(balance, null);
 }

 /** Construct and account with the given balance and parent account.
 * If the balance is negative, print and error.
 */
 public Account (int balance, Account parent) {
 if (amount < 0) {
 System.err.println("Your initial balance cannot be negative!");
 } else {
 myBalance = balance;
 myParent = parent;
 }
 }

 /** Deposit into this account. If the amount is negative, print an
 * error and leave the balance unchanged.
 */
 public void deposit (int amount) {
 if (amount < 0) {
 System.err.println("You may only deposit non-negative sums!");
 } else {
 myBalance = myBalance + amount;
 }
 }

 /** Subtract the amount from the account, if possible. If it would leave
 * a negative balance, print an error and leave the balance unchanged.
 */
 public void withdraw (int amount) {
 if (myBalance < amount) {
 System.err.println("Not enough funds");
 } else {
 myBalance = myBalance - amount;
 }
 }

 /** Get the balance.
 */
 public int balance () {
 return myBalance;
 }

 private int myBalance;
 private Account myParent;
}

