CS 61A Spring 1998 Midterm 1
 Professors Fateman \& Forsyth

Question \#1

What will Scheme print in response to the following expressions? If it produces an error or runs forever without a result, just say "error". If it is a procedure, say "procedure".
Assume no global variables have been defined beforehand except where noted.

```
(word '(+2 3) (+2 3))
((lambda (x y z) (* 5 y)) 3 4 7)
;from ex. 1.32, p. }6
((if 3 - *) 32 2)
(abc)
(let ((a 5) (* +) (+ *))
    (+ a a))
((lambda (-) (- 2)) (lambda (*) (+ * 4) ))
```

(accumulate se '(hurrah) (lambda(x) (word 'hip x)) 1 (lambda (x) (1+x)) 3)

Question \#2 (True or False?)

\ldots A $\emptyset(\log (2 n))$ algorithm is slower than a $\emptyset(2 \log (n))$ algorithm
\qquad For small size inputs knowing the \emptyset order of an algorithm is more useful than for large inputs
\qquad If $f(x)$ is $\emptyset(\log x)$, then $\lim (x=>$ infinity $) f(x) /(\log x)$ is zero
\qquad If f is defined as (define $(f x)(* x x x))$ then and applicative-order evaluation of $(\mathrm{f}(\mathrm{g} y))$ evaluates (g y) more often than a normal -order evaluation
\qquad Function g below defines a linear recursive process

$$
(\operatorname{define}(\mathrm{gabc})(\text { if }(>\mathrm{ab}) \mathrm{c}(+\mathrm{c}(\mathrm{~g}(+\mathrm{a} 1)(-\mathrm{b} 1)(+\mathrm{c} 1)))))
$$

Question \#3

Write a linear iterative function $l i$-nth that takes a number n and a sentence and returns the $n '$ th element of that sentence and an empty sentence if there is no such element. Count from zero.
For example,

```
>(li-nth 0'(1
1
> (li-nth 2'(1 1 2 3 4))
3
>(li-nth 4 '(1
'()
```


Question \#4

random takes an argument n, and returns a random number from the set $\{0,1, \ldots, \mathrm{n}-1\}$.
Does the following segment of scheme define a function? In one sentence, explain why or why not.

```
(define (f x)
    ((lambda (u)
    (let ((a 0)
        (b 1))
        (random u)))
        (+45 x)))
```


Question \#5

A polynomial can be repeated as a sentence, where the words are the coefficients of the terms.
The first element of the sentence represents the term of degree 0 (the constant term), the second represents the term of degree 1 , etc. So, for example, $3 x^{2}+2 x+1$ would be '(123) and $27 x 8+1$ would be '(1000000027) The polynomial whose coefficients are all zero is represented by '().

Write a function add-polys that takes two polynomials each of arbitrary degree, each represented as a sentence and returns their sum, represented as a sentence. For example
> (add-polys '(123)'(1000000027))
(2230000027)

In this representation, multiplying polynomials by terms (otherwise known as monomials; $9 \mathrm{x}^{2}$ is a monomial or term whereas $9 x^{2}+1$ is a polynomial with two terms) involves shifting and multiplying.
Write a function term-multiply-poly that takes a polynomial of arbitrary degree represented as a sentence, a term coefficient and the degree of a term and returns the product represented by a sentence For example, if I wanted to multiply $9 x^{2}+2 x+1$ by $7 x 3$, I would do:
$>$ (term-multiply-poly '(129) 7 3)
(00071463)

Quesiton \#6

Write a procedure interleave-2 that takes two sentences $s 1$ and $s 2$ as its arguments. It returns the sentence whose elements are alternate elements of $s 1$ and $s 2$ beginning witht he first (the first of $s 2$, the first of $s l$, the second of $s 2$, the second of $s l$, and so on). If one sentence is longer than the other, it behaves as if the shorter were padded with 0's.
For example,
$>$ (interleave-2 '(1 234 4) '(5 678 8))
(51627384)
$>$ (interleave-2 '(9) '(10))
(10 9)
$>$ (interleave-2 '(9) '(10 11 12))
(109110120)
$>$ (interleave-2 '(1 2334) '(5))
(51020304)

Question \#7

Write a function decapitate-and-keep-head that, given a function f of one argument returns a new function of one argument that returns the same value as ($\mathrm{f} x$), except the value is the first of what (f) would return
For example,
(define foo (decapitate-and-keep-head square))
$>$ (foo 8)
6
$>$ (foo 12)
1

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
 University of California at Berkeley If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.

