
CS61A, Spring 1995
Midterm #3

Question 1 (3 points):

What will the Scheme interpreter print in response to each of the following expressions? Also, draw a ``box
and pointer'' diagram for the result of each expression. Hint: It'll be a lot easier if you draw the box and pointer
diagram first!

(let ((x (list 1 2 3 4)))
 (set-cdr! x (caddr x))
 x)

{\prgex%
(let ((x (list 1 2 3 4)))
 (set-car! (cdr x) (cddr x))
 x)

(let ((x (list 1 (list 2 3) 4)))
 (set-car! (cadr x) (car x))
 x)

Question 2 (4 points):

Define an object class called password-protect. The purpose of the class is to allow an object to be
``hidden'' so that a password is needed to send it messages. Here's how it works. Suppose we have this class
definition:

(define-class (counter)
 (instance-vars (count 0))
 (method (next)
 (set! count (+ count 1))
 count))

In order to make a password-protected counter, we want to be able to do this:

> (define ppc (instantiate password-protect
 (instantiate counter) 'exotic))
PPC
> (ask ppc 'next)
ERROR: Password incorrect
> (ask (ask ppc 'exotic) 'next)
1
> (ask (ask ppc 'exotic) 'next)
2

In this example, exotic is the password for the protected counter. When sent this password as a message,
the object ppc returns the underlying counter object, which can then be sent its own messages.

CS61A: Midterm #3--Spring 1995

1

Question 3 (4 points):

Write deep-map!, a procedure that takes an arbitrary list structure, applies a given function to each leaf, and
modifies the argument list to replace each leaf with the value returned by the function. For example:

> (define x (list (list 3 4) 5 (list) (list (list 6))))
x
> x
((3 4) 5 () ((6)))
> (deep-map! square x)
((9 16) 25 () ((36)))
> x
((9 16) 25 () ((36)))

For the purposes of this problem, a ``leaf'' is anything that isn't a pair or the empty list.

Do not allocate any new pairs in your solution! Modify the existing list structure. (You are not, of course,
responsible for any pairs that might be allocated by the function you are given as argument, like square in
the example above.)

Question 4 (4 points):

Define a stream named oz containing all possible lists whose elements are ones and zeros, like this:

> (show-stream oz 40)
(() (0) (1) (0 0) (1 0) (0 1) (1 1) (0 0 0) (1 0 0) (0 1 0) (1 1 0)
 (0 0 1) (1 0 1) (0 1 1) (1 1 1) (0 0 0 0) (1 0 0 0) (0 1 0 0)
 (1 1 0 0) (0 0 1 0) (1 0 1 0) (0 1 1 0) (1 1 1 0) (0 0 0 1) (1 0 0 1)
 (0 1 0 1) (1 1 0 1) (0 0 1 1) (1 0 1 1) (0 1 1 1) (1 1 1 1) (0 0 0 0 0)
 (1 0 0 0 0) (0 1 0 0 0) (1 1 0 0 0) (0 0 1 0 0) (1 0 1 0 0) (0 1 1 0 0)
 (1 1 1 0 0) (0 0 0 1 0) ...)

Your solution need not have the elements in the same order as this example.

You may use any stream or procedure defined in the text.

Group question (4 points):

Draw the environment diagram for the situation after the following definition and invocation have been
evaluated:

(define maximizer
 (let ((value 0))
 (lambda (arg)
 (if (> arg value)
 (set! value arg))
 value)))

(define foo (maximizer 6))

Take a peek at the solutions

CS61A: Midterm #3--Spring 1995

2

	CS61A: Midterm #3--Spring 1995

