
CS61A, Spring 1995
Midterm #1

Question 1 (3 points):

What will Scheme print in response to the following expressions? If an expression produces an error message,
you may just say ``error''; you don't have to provide the exact text of the message. If the value of an
expression is a procedure, just say ``procedure''; you don't have to show the form in which Scheme prints
procedures.

(first (butfirst '(yesterday)))

((lambda (x) x) (lambda (x) x))

((lambda (w) (sentence (word 'h w) (word 'th w))) 'ere)

(+ (* 3 5 0 7) (- 8 2))

(and (> 2 3) (/ 5 0))

(let ((me 'you)
 (you 'me))
 (sentence 'you 'love me))

Question 2 (3 points):

Consider the following code.

(define (all-vowels? wd)
 (cond ((empty? wd) #t)
 ((vowel? (first wd)) (all-vowels? (bf wd)))
 (else #f)))

(define (keep-all-vowels sent)
 (cond ((empty? sent) '())
 ((all-vowels? (first sent))
 (se (first sent) (keep-all-vowels (bf sent))))
 (else (keep-all-vowels (bf sent)))))

List all of the calls to all-vowels?, including recursive calls, during the evaluation of the following
expression:

(keep-all-vowels '(eva ai xxx a))

Question 3 (5 points):

Recently the 61A staff has been playing with the ``four fours'' problem: How many different numbers can we
make by combining four fours with various arithmetic operators? For example, we can make 4 * (4+4) - 4
which is 28. It turns out that some operators can produce very large results. For example, 4^{4^4} is a number
with 155 digits, and 4^{4^{4^4}} is too large for scm to compute. It's therefore useful to write ``safe'' versions
of the arithmetic operators, like this:

CS61A: Midterm #1--Spring 1995

1

(define (safe-expt base power)
 (cond ((> base 30) #f)
 ((> power 8) #f)
 (else (expt base power))))

The trouble with this is that we can't use safe-expt to provide an argument to some other arithmetic
function, as in this expression:

(+ (safe-expt 4 (safe-expt 4 4)) 4)

because the + procedure will complain if given #f as an argument. To make this system work, we need
false-ok versions of all the arithmetic operators:

> (false-ok-+ 4 4)
8
> (false-ok-+ 4 #f)
#f

Your job is to write make-false-ok, a higher order procedure that takes as its argument an arithmetic
operator like +, returning a version that checks its arguments for falsehood. If either argument is false, the
new version should return false; if not, it should invoke the original operator. So we should be able to say

(define false-ok-+ (make-false-ok +))

You may assume that the argument to make-false-ok is a function of two arguments.

Read the problem again. Don't write false-ok-+!

Question 4 (3 points):

Given below is a solution to the change counting lab exercise

(define (cc amount coin-sent)
 (cond ((= amount 0) 1)
 ((or (<amount 0) (empty? coin-sent)) 0)
 (else (+ (cc (- amount (first coin-sent)) coin-sent)
 (cc amount (bf coin-sent))))))

Fill in the blanks in the framework below to produce a procedure that returns #t or #f according to whether
change can be made for the given amount using the given coins.

(define (change-possible? amount coin-sent)

 (cond ((= amount 0) ________)

 ((or (<amount 0) (empty? coin-sent)) ________)

 (else (________ (change-possible? (- amount (first coin-sent))

 coin-sent)

CS61A: Midterm #1--Spring 1995

2

 (change-possible? amount (bf coin-sent))))))

Question 5 (5 points):

Write a predicate two-twice? that takes a word as its argument. It should return #t if and only if there is
some sequence of two letters that appears twice in the word:

> (two-twice? 'banana)
#t
> (two-twice? 'alabaster)
#f
> (two-twice? 'mississippi)
#t
> (two-twice? 'decided)
#t
> (two-twice? 'laxxxor)
#t

Notice, in the last example above, that the two pairs overlap (xx twice).

You may use the following procedure to help:

(define (second wd)
 (first (butfirst wd)))

Take a peek at the solutions

CS61A: Midterm #1--Spring 1995

3

	CS61A: Midterm #1--Spring 1995

