
CS 61A Midterm #2 | February 28, 1994Your namelogin cs61a{Discussion section numberTA's nameThis exam is worth 20 points, or about 11.5% of your total course grade. The examcontains four substantive questions, plus the following:Question 0 (1 point): Fill out this front page correctly and put your name and logincorrectly at the top of each of the following pages.This booklet contains �ve numbered pages including the cover page. Put all answers onthese pages, please; don't hand in stray pieces of paper. This is an open book exam.When writing procedures, don't put in error checks. Assume that you will begiven arguments of the correct type.Our expectation is that many of you will not complete one or two of these questions. Ifyou �nd one question especially di�cult, leave it for later; start with the ones you �ndeasier.CS 3 alumni please note: Don't use the CS-3-only higher order functions (every,keep, accumulate) in these problems!! 0 =11 =42 =53 =54 =5total =201



Question 1 (4 points):What will Scheme print in response to the following expressions? Also, draw a \box andpointer" diagram for the result of each expression:(list '(2 3) '(4 5))
(cons (list 2 3) 4)
(cddadr '((a b c d e) (f g h i j) (l m n o p) (q r s t u)))
(cons (cdr '(a)) (cdr '(b)))

2



Your name login cs61a{Question 2 (5 points):(a) Using the binary tree abstract data type as de�ned on page 115 of the text (withselectors entry, left-branch, and right-branch and constructor make-tree), write thepredicate all-smaller? that takes two arguments, a binary tree of numbers and a singlenumber, and returns #t if every number in the tree is smaller than the second argument.Examples:> (define my-tree (make-tree 8 (make-tree 5 '() '())(make-tree 12 '() '())))> (all-smaller? my-tree 15)#T> (all-smaller? my-tree 10)#F

(This question continues on the next page.) 3



Question 2 continued:(b) Using all-smaller? and, if you wish, a similar all-larger? (which you don't haveto write), write a predicate bst? that takes a binary tree of numbers as its argument,returning #t if and only if the tree is a binary search tree. (That is, your procedure shouldreturn true only if, at every node, all of the numbers in that node's left branch are smallerthan the entry at the node, and all of the numbers in the node's right branch are largerthan the entry.)

4



Your name login cs61a{Question 3 (5 points):We are creating a database of the greatest songs in the world. The �rst step is to de�nean abstract data type for a song:(define title car)(define artist cadr)(define make-song list)Now we set up a global variable great-songs whose value is a list of songs:(define great-songs (list (make-song '(she loves you) '(the beatles))(make-song '(waterloo sunset) '(the kinks))(make-song '(pictures of lily) '(the who))(make-song '(davy the fat boy) '(randy newman))(make-song '(expecting to fly)'(buffalo springfield))(make-song '(tell her no) '(the zombies))))Your job is to write a procedure who-sang that takes a song title as its argument andreturns the corresponding artist, or #f if the song isn't one of the greatest in the world:> (who-sang '(waterloo sunset))(THE KINKS)> (who-sang '(stairway to heaven))#FRespect the data abstraction.
5



Question 4 (5 points):We want to combine the techniques of data-directed programming and message-passing asfollows: Instead of using a symbol like complex as a manifest type tag, we'll use a list ofmessages and their associated methods, as in the following example.> (define complex-methods (list (cons 'add +complex)(cons 'sub -complex)(cons 'mul *complex)(cons 'div /complex)))> (define (make-complex z)(attach-type complex-methods z))Your job is to rewrite operate-2 (from page 144) to work with this new system insteadof using a table of operators and types. If any other procedures must be changed, changethem too. You may leave out the error checks. For your convenience, here is thebook's operate-2, without its error checks:(define (operate-2 op arg1 arg2)(let ((t1 (type arg1)))(let ((proc (get t1 op)))(proc (contents arg1) (contents arg2)))))

6


