
CS 61A Midterm #3 — April 15, 2009

Your name

login: cs61a–

Discussion section number

TA’s name

This exam is worth 40 points, or about 13% of your total course grade. It includes two
parts: The individual exam (this part) is worth 35 points, and the group exam (the
other part you probably just finished) is worth 5 points. The individual part contains six
substantive questions, plus the following:

Question 0 (1 point): Fill out this front page correctly and put your name and login
correctly at the top of each of the following pages.

This booklet contains seven numbered pages including the cover page. Put all answers on
these pages, please; don’t hand in stray pieces of paper. This is an open book, open notes
exam.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

Our expectation is that many of you will not complete one or two of these questions. If
you find one question especially difficult, leave it for later; start with the ones you find
easier.

If you want to use procedures defined in the book or reader as part of your
solution to a programming problem, you must cite the page number on which
it is defined so we know what you think it does.

READ AND SIGN THIS:

I certify that my answers to this exam are all my own
work, and that I have not discussed the exam questions or
answers with anyone prior to taking this exam.

If I am taking this exam early, I certify that I shall not
discuss the exam questions or answers with anyone until
after the scheduled exam time.

0 /1

1 /6

2 /6

3 /10

4 /4

5 /8

total /35

1



Question 1 (6 points):

What will the Scheme interpreter print in response to the last expression in each of the
following sequences of expressions? Also, draw a “box and pointer” diagram for the
final result of each sequence of expressions. If any expression results in an error,
circle the expression that gives the error message and just write “ERROR”; you
don’t have to give the precise message. Hint: It’ll be a lot easier if you draw the box and
pointer diagram first !

(define x (list 1 2))
(define y (list 3 4))
(define z (append x y))
(set-car! (cdr x) 5)
(set-car! y 6)
z

(define x (list 1 2))
(define y (list 3 4))
(define z (cons x y))
(set-car! (cdr x) 5)
(set-car! y 6)
z

(define x (list 1 2))
(define y (list 3 4))
(define z (cons x y))
(set! x 5)
(set! y 6)
z

2



Your name login cs61a–

Question 2 (6 points): The following is an implementation of an object class in plain
Scheme:

(define make-foo
(let ((a 3))
(lambda (b)

(let ((c 4))
(define (d e)

(+ a e))
(define (f g)

(if (eq? g ’h)
d
(error "huh?")))

f))))

Indicate which symbol in the code above corresponds to each OOP concept. Note: One
of the questions has two answers (two symbols that match the concept), and one of the
symbols is the answer to two of the questions!

Class variable: a b c d e f g h

Instance variable: a b c d e f g h

Instantiation variable: a b c d e f g h

Message: a b c d e f g h

Method: a b c d e f g h

Dispatch procedure: a b c d e f g h

Method argument: a b c d e f g h

Instance: a b c d e f g h

3



Question 3 (10 points):

(a) Given a list in which each element is a list of length 2, turn it into an association list
in which the first element of each sublist becomes a key and the second element becomes
the associated value. For example:

> (define ls (list (list 1 2) (list 3 4) (list 5 6)))
> ls
((1 2) (3 4) (5 6))
> (twos->assoc ls)
((1 . 2) (3 . 4) (5 . 6))

Use list mutation only; do not allocate any new pairs!

(Hint: Is the problem asking you to change the individual elements of the list, or is it
asking you to rearrange elements?)

This question continues on the next page.

4



Your name login cs61a–

Question 3 continued:

(b) Given a list in which each element is a list of length 2, turn it into a flat list in which
the elements of the sublists become the elements of the big list. For example:

> (define ls (list (list 1 2) (list 3 4) (list 5 6)))
> ls
((1 2) (3 4) (5 6))
> (twos->flat ls)
(1 2 3 4 5 6)

Use list mutation only; do not allocate any new pairs!

You don’t have to keep the first pair of the argument list as the first pair
of the returned list.

(Hint: Is the problem asking you to change the individual elements of the list, or is it
asking you to rearrange elements?)

5



Question 4 (4 points):

(define (foo vec)
(define (help result index sum len)
(if (= index len)

(begin (vector-set! result index sum)
result)

(begin (vector-set! result index (vector-ref vec index))
(help result

(+ index 1)
(+ sum (vector-ref vec index))
len))))

(help (make-vector (+ (vector-length vec) 1))
0
0
(vector-length vec)))

What does Scheme return in response to the following expression, given the procedure
definition above?

> (foo ’#(5 6 7 8))

6



Your name login cs61a–

Question 5 (8 points):

One common operation in audio signal processing is smoothing a signal – reducing sudden
short changes in volume. A simple smoothing technique is to average several consecutive
values.

Write a procedure stream-average that takes two arguments: a stream s of numbers, and
a positive integer n. It should return a stream in which each element is the average of n
consecutive elements of s. For example:

> (show-stream (stream-average (list->stream ’(1 20 300 4000 50000)) 3))
(107 1440 18100) ; This is 321/3, 4320/2, and 54300/3.

You may assume that the argument stream is an infinite stream
(unlike the example above).

Hint: Write a helper stream-sums that takes the same arguments and adds up n elements,
then use that to compute stream-average.

7


