
Question 1 (6 points): 

What will Scheme print in response to the following expressions? If an expression produces an error 

message, you may just write “error”; you don’t have to provide the exact text of the message. Also, draw 

a box and pointer diagram for the value produced by each expression. 

(map l i st  ’ (1  2  3))  

 

 

 

 

 

( let  ( (x  ’ (1  2) )  

 (y  ’ (8  9) ) )  

  ( cons x  (append y  x) ) )  

 

 

 

 

 

 

(cons (cons 1 2)  (append ’ (18 3)  ‘ ( ) ) )  

  



Question 2 (8 points): 

Suppose we want to represent books using OOP. We have a book  class and a book-store class. For each 

of the following, state whether it should be an instance, child class, instance variable, instantiation 

variable, or class variable; and state the associated class (book  or bookstore). Each may be used any 

number of times. 

 

SICP   _____________________________________ ______________ 

 

novel   _____________________________________ ______________ 

 

title   _____________________________________ ______________ 

 

ASUC Bookstore _____________________________________ ______________ 

 

inventory of books _____________________________________ ______________ 

  



Question 3 (5 points): 

In this problem we are interested in Trees (datum/children) in which each datum is a pair. We’ll call this a 

“pairTree.” 

We want to write a procedure pairtree-map  that takes three inputs: a function to apply to the car  of each 

datum, a function to apply to the cdr  of each datum, and a pairTree. It should return a pairTree with the 

same shape as the argument pairTree, but in which each datum is replaced with a pair containing the 

results of calling the two functions on the two halves of each datum. 

So if mytree  is the pairTree 

 (1  .  2) 

             /         \ 

           /             \ 

     (3  .  4)       (5  .  6) 

 

The the result of (pairt ree-map square – mytree)  is 

  (1  .  -2) 

   /         \ 

 /  \ 

       (9  .  -4)    (25  .  -6) 

 

Find and correct all data abstraction violations. 

(def ine (pai rtree -map car - fn  cdr- fn  tree)  

 ( let  ( ( th is  ( car  tree) ))  

      (make-tree (make -tree (car - fn  (datum th is) )  (cdr -fn  (cdr  th is )) )  

   (pai r -forest -map car- fn  cdr - fn  (ch i ldren tree)) ) ) )  

(def ine (pai r -forest -map  car - fn  cdr - fn  forest)  

 ( i f  (nul l? Forest )  

       ’ ( )  

 (make-tree (pai rt ree -map car- fn  cdr- fn  (datum foest ))  

       (pai r -forest -map car - fn  cdr - fn  (cdr  forest ) ) ) ) )  

  



Question 4 (4 points): 

Suppose we type this into Scheme-1: 

( ( lambda (x  y)  ( lambda (z)  (z  x  y) ) )  5  7)  

(a) What is the result? 

 

(b) Throughout the process of getting the above result, how many calls to eval -1  are made in which the 

argument expression is 

 

a number? ________________ 

 

a special form? ________________ 

 

an application of a primitive procedure? ________________ 

 

an application of a non-primitive procedure? ________________ 

  



Question 5 (8 points): 

This question deals with the Mobile and Branch ADT from exercise 2.29. 

Recall: 

* a Mobile has two Branches. 

* a Branch consists of a length and a structure, which is either a number (the weight) or another Mobile. 

Constructors and Selectors: 

(make-mobi le left  r ight )  

( le ft -branch M)   ;  you may abbreviate th is  as LB  

(r ight -branch M)  ;  you may abbreviate th is  as RB  

(make-branch length structure )  

(branch -length  B)  ;  you may abbreviate th is  as BRL  

(branch -st ructure B)  ;  you may abbreviate th is  as BRS  

If you hang a mobile, the weights can rotate freely, so that the same mobile might have “left” and “right” 

reversed at a different time. For example these are the same mobile: 

    |    | 

  <6>    |   <3>    <3> |    <6> 

.-----------+-------.  .---------+-------------. 

2  4  4       2 

(where numbers such as <6> are lengths, and plain numbers such as 2 are weights). 

Similarly all these are the same: 

     |       |    | 

   <6>    |   <3>    <6>    |   <3>    <3> |    <6> 

 .-----------+-------.   .-----------+-------.  .---------+-------------. 

      <1> |  <2>  2      <2>  | <1>  2  2             <1> |  <2> 

     .-----+----------.  .---------+-----.                .-----+----------. 

    7  4  4        7                7         4 

 

Define a procedure called same-structure?  That takes two mobiles as arguments, and returns #t  if and 

only if the two are the same, possibly including rotations anywhere in the structure. 

  



Question 6 (8 points): 

Write a procedure three-branch ing?  That takes a list as arugment. It should return #t  if and only if the 

list and every list that appears as an element, or an element of an element, etc., has three elements. For 

example: 

(three-branch ing? ’ (1 2 3) )    => #t  

(three-branch ing? ’ ( (1 2  3)  2  3) )   => #t  

(three-branch ing? ’ ( (1 2  3)  (4 5  6)) )   => #f  

(three-branch ing? ’ (1 2)  (3  4)  5 )   => #f  

(three-branch ing? ’ ( ) )     => #f  


