
CS61A Midterm #1 February 15, 2006

Question 1 (6points):

What will Scheme print in response to the following expressions? If an expression produces

an error message, you may just write “error”; you don’t have to provide the exact text of the

message. If the value of an expression is a procedure, just write “procedure”; you don’t have

to show the form in which Scheme prints procedures.

(keep (lambda (x) (or (even? x) (< (count x) 3)))

 ‘(1 12 123)) __________________

(se ‘(procedures are) (first ‘class)) __________________

(every (* x x) ‘(4 5 6)) __________________

(every first (keep even? ‘(23 48 12 87 6)) __________________

(word (first ‘(wish you)) (bf ‘(were here))) __________________

(cond (‘comfortable ‘numb) (hey you) (else money)) __________________

Question 2 (3 points):

(define (funky a b c)

 (if a b (* c c)))

> (funky (* 2 2) (* 3 3) (funky #f (* 4 4) (* 5 5)))

How many times is * invoked…

In applicative order? _______ In normal order? ________

In actual Scheme? _______

Question 3 (4 points):

Circle the procedures below (if any) that generate an iterative process. Don’t circle the ones

(if any) that generate a recursive process.

(define (magic-number? num)

 (if (< num 0)

 #f

 (if (= num 0)

 #t

 (magic-number? (- num 26)))))

(define (magic-number? num)

 (if (< num 0)

 #f

 (if (= num 0)

 #t

 (or (magic-number? (- num 3)) (magic-number? (- num 7))))))

Question 4 (3 points):

(define (mystery n m)

 (cond ((= n m) (+ n m))

 ((< n m) (mystery n (- m 1)))

 (else (mystery (- n 1) m))))

Which of the following is loop invariant of mystery, defined above, which takes two integers

n and m as arguments?

______A. m+n _______B. n-m

______C. min(m, n) _______D. max(m, n)

Question 5 (3 points): Circle T for true of F for false for each of the following.

T F A Θ(N) algorithm always runs faster than a Θ(2N) algorithm for large enough

values of N.

T F A Θ(N) algorithm always runs faster than a Θ(N
2
) algorithm for large enough

values of N.

T F AΘ(1) algorithm always runs faster than a Θ(N) algorithm for large enough

values of N.

Question 6 (6 points):

Write the predicate no-duplicates? that takes a sentence as its argument, and returns #t if and

only if no work appears more than once in the sentence. For example:

STK> (no-duplicates? ‘(and your bird can sing))

#t

STK> (no-duplicates? ‘(the fool on the hill))

#f

Question 7 (7 points):

Write make-customized-every, a function that takes a predicate pred as its argument and

returns a procedure that behaves like every, except that it applies its function argument fn

only to those words in the sentence argument sent for which the pred returns #t. Words for

which pred returns #f are retained in the returned sentence unchanged. For example:

STK> (define num-every (make-customized-every number?))

STK> (num-every square ‘(a 2 b 3 c 4))

(a 4 b 9 c 16)

Question 8 (7 points):

Write a procedure poly that takes as its argument a sentence of one or more numbers, the

coefficients of a polynomials, and returns a procedure that takes a single number as argument

and returns the value of that polynomial with the given number as its argument.

For example, the polynomial f(x) = x
3
 + 2x

2
 + 3x + 4 would be defined and used this way:

STK> (define f (poly ‘(1 2 3 4)))

STK> (f 1)

10 ; f(1) = 1^3 + 2*1^2 + 3*1 + 4 = 10

STK> (f -1)

2 ; f(-1) = (-1)^3 + 2*(-1)^2 + 3*(-1) + 4 = 2

STK> (define g (poly ‘(1 0 -4))) ; g(x) = x^2 - 4

STK> (g 2)

0 ; g(2) = 2^2 – 4 = 0

Hint: Another way to write the polynomial ax
3
 + bx

2
 + cx + d is

 x * (ax
2
 + bx + c) + d

