CS61A Midterm \#1 February 15, 2006

Question 1 (6points):

What will Scheme print in response to the following expressions? If an expression produces an error message, you may just write "error"; you don't have to provide the exact text of the message. If the value of an expression is a procedure, just write "procedure"; you don't have to show the form in which Scheme prints procedures.
(keep (lambda (x) (or (even? x) (< (count x) 3))) '(1 12 123))
(se '(procedures are) (first 'class))
(every (* x x) '(456))
(every first (keep even? '(23 4812876))
(word (first '(wish you)) (bf '(were here)))
(cond ('comfortable 'numb) (hey you) (else money))

Question 2 (3 points):

```
(define (funky a b c)
    (if ab (*cc)))
> (funky (* 2 2)(* 3 3)(funky #f (* 4 4)(* 5 5)))
```

How many times is * invoked...

In applicative order? \qquad In normal order?

In actual Scheme?

Question 3 (4 points):

Circle the procedures below (if any) that generate an iterative process. Don't circle the ones (if any) that generate a recursive process.

```
(define (magic-number? num)
    (if (< num 0)
        #f
        (if (= num 0)
            #t
            (magic-number?(- num 26) ) ) ) )
```

(define (magic-number? num)
(if (<num 0)
\#f
(if (= num 0)
\#t
(or (magic-number? (- num 3)) (magic-number? (- num 7))))))

Question 4 (3 points):

```
(define (mystery n m)
    (cond ((= n m) (+ n m))
        ((< n m) (mystery n (-m 1)))
        (else (mystery (- n 1) m) )) )
```

Which of the following is loop invariant of mystery, defined above, which takes two integers n and m as arguments?
\qquad A. $m+n$ \qquad B. $\mathrm{n}-\mathrm{m}$
\qquad C. $\min (m, n)$
\qquad D. $\max (m, n)$

Question 5 (3 points): Circle \mathbf{T} for true of \mathbf{F} for false for each of the following.
T F $\quad \mathrm{A} \Theta(\mathrm{N})$ algorithm always runs faster than a $\Theta(2 \mathrm{~N})$ algorithm for large enough values of N .

T F $\quad \mathrm{A} \Theta(\mathrm{N})$ algorithm always runs faster than a $\Theta\left(\mathrm{N}^{2}\right)$ algorithm for large enough values of N .

T F $\mathrm{A} \Theta(1)$ algorithm always runs faster than a $\Theta(\mathrm{N})$ algorithm for large enough values of N .

Question 6 (6 points):

Write the predicate no-duplicates? that takes a sentence as its argument, and returns \#t if and only if no work appears more than once in the sentence. For example:

STK> (no-duplicates? '(and your bird can sing))
\#t
STK> (no-duplicates? '(the fool on the hill))
\#f

Question 7 (7 points):

Write make-customized-every, a function that takes a predicate pred as its argument and returns a procedure that behaves like every, except that it applies its function argument fn only to those words in the sentence argument sent for which the pred returns \#t. Words for which pred returns \#f are retained in the returned sentence unchanged. For example:

STK> (define num-every (make-customized-every number?))
STK $>$ (num-every square '(a 2 b 3 c 4))
(a 4 b 9 c 16)

Question 8 (7 points):

Write a procedure poly that takes as its argument a sentence of one or more numbers, the coefficients of a polynomials, and returns a procedure that takes a single number as argument and returns the value of that polynomial with the given number as its argument.

For example, the polynomial $f(x)=x^{3}+2 x^{2}+3 x+4$ would be defined and used this way:
STK $>$ (define f (poly '(12 244$)$))
STK> (f 1)
$10 \quad$ STK $>(\mathrm{f}-1)$
2

$$
; f(1)=1^{\wedge} 3+2^{*} 1^{\wedge} 2+3^{*} 1+4=10
$$

$$
; f(-1)=(-1)^{\wedge} 3+2 *(-1)^{\wedge} 2+3 *(-1)+4=2
$$

STK $>\quad\left(\right.$ define $g \quad\left(\right.$ poly $\left.{ }^{\prime}(10-4)\right) \quad ; g(x)=x^{\wedge} 2-4$
STK> (g 2)
0

$$
; g(2)=2^{\wedge} 2-4=0
$$

Hint: Another way to write the polynomial $\mathrm{ax}^{3}+\mathrm{bx}^{2}+\mathrm{cx}+\mathrm{d}$ is

$$
x *\left(a x^{2}+b x+c\right)+d
$$

