CS 61A Midterm #2 — March 12, 2003

Your name [AVID Tf‘?’?’(f pisfis desid

login: csbla—_c£

Discussion section number 1£/1S /
i

TA’s name M\ﬁ J,

This exam is worth 40 points, or about 13% of ﬁrour total course grade. The exam contains
5 substantive questions, plus the following:

Question 0 (1 point): Fill out this front p:ﬁge correctly and put your name and login
correctly at the top of each of the following pages.

This booklet contains six numbered pages inclﬁding the cover page. Put all answers on
these pages, please; don’t hand in stray pieces of paper. This is an open book exam.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

Our expectation is that many of you will not complete one or two of these questions. If
you find one question especially difficult, leave it for later; start with the ones you find
easier.

READ AND SIGN THIS: 0 2
I certify that my answers to this exam are all my own 1 /8
work, and that I have not discussed the exam questions or
answers with anyone prior to taking this exam. 2 /8
If 1 am taking this exam early, 1 certify that I shall not 3 T; /8
discuss the exam questions or answers with anyone until 4 .
after the scheduled exam time. /8
l _, 5| 4
/(Av/ ‘;’é‘*f‘f’:/f ’ w‘*’/f”
& total /40

Question 1 (8 points):

What will Scheme print in response to the following expressions? If an expression produces
an error message, you may just write “error”; you don’t have to provide the exact text of
the message. Also, draw a box and pointer diagram for the value produced by
each expression.

(cadadr ’((a (b) c) (d (e) £) (g (h) i)))

Ca> T '
SV

e

(cons (append ’(3) ' (4)) ,CS))‘D_—_——}\;__T‘D\A‘J_Z‘:;.\

(1) 5) o S

(cons (append 3 4) 5)

vy

(list (coms 3 4) ’(5)) ;

. P ——
o : ! \ ! /7
({) o /

\y‘—_/ /\ 4_1“—\
‘\’____

NP s
(=) &)y gl A

VIR bt

7Y S

Your name Vfwbey Sn) login cs6la—_ L&

Question 2 (8 points):

Write a procedure lastfirst whose argument is a list of sentences (not a deep-list that
could contain lists of lists of lists). It should return a list of sentences in which eyery two-
word sentence in the argument is included with the two words interchanged, and sentences
with other than two words are omitted:

*

> (lastfirst ’((john lennon) (james paul mccartney)
(george harrison) (ringo starr)))
((lennon john) (harrison george) (starr ringo))

Respect the data abstraction; use the appropriate selectors and constructors for sen-
tences and for non-sentence lists.

(a) Write a recursive version of lastfirst. Write only one procedure, without helper
functions, and without using higher-order procedures.

e N
HRetire Tl i [c-\—)
Ut ((Fipor=ce (o e \);
(cong (i Pty Y3
e - O A R g cr
(= Leawrs 202 25 (rope (a0 (ane Lit-ze
Cliprs en N
o gce)
‘e For ean
O PO S o e
fole ! v S AN

(b) Write a version of lastfirst that uses higher-order procedures and does not use

recursion.
7 N .
(\,‘ X\ﬂ- X o S <’
1¢ v ‘ ““{ O;‘,"i(;idf‘&":-r‘ v “J et s \r: Vs ‘(, i oW /
: N AR NP O/‘WL\' o
(.f’r> [N ' - / ‘//7 »
O o Ui oo
B .—)\
(ﬁ W)
ANy \ AN
y oot \

Question 3 (8 points):

We are going to use the Tree abstract data type to represent the subdivisions of a paper.

My paper
|

|
Introduction
i

1 1

1 A

Proposed Solutiqn

Conclusion

=

|

Problem Description Requirements

Cost

New Computers

—

T] |

PC

Unix | Mac

l

Implementation

Maintenance

However, when a heading has only one subheadmg (for example, “Proposed Solution”
has only “New computers” as a subheadmg); it doesn’t actually make sense to subdi-

vide the topic.
datum/children abstract data

type discussed in lecture) in which the data

You will write divisions-reduced, which takes in a Tree (using the

It outputs a similar tree except that each node that has only a single child is replaced by
a node with the datum of the parent, followed by a hyphen, followed by the datum of the
child. The node’s children are the child’s children, with their divisions reduced.

My paper

{
Intraduction
i

_

Proposed Solution - New Computers

Conclusion - Cost

i |]

1

]

Problem Description Requirements PC

Unix Mac Implementation

Maintenance

Write divisions-reduced.

R R

-~ Y
(~ " # g A\/!@: “

(y," — /“_pj/-',:
N

ire | Ao see
"*’“‘:ﬂp R J

{ ro
(((?KIQL s

N - . ' R i, e
(& e Cwrucimmae DNTTT

YA

' N ~ 4.‘
Coperrsne S

(:\'3 o)

£

Y ' ;
,z_;\,v{ R LAY AN E e

A\(

A A S ey |
- ‘((J“{‘D‘f (/‘},_‘./‘ }r\;y;e{/
ST e 0y

! -
Iyt

ST DG

Ve = '
).(‘(\ —+vée /))
{onlQuen ey
N A yven
s V24 (,¢;

Your name DA LN ‘ login cs6la—_ce

Question 4 (8 points):

Write a predicate procedure deep-car? that takes a symbol and a deep-list (possibly
including sublists to any depth) as its arguments. It should return true if and only if the
symbol is the car of the list or of some list that’§ an element, or an element of an element,
etc. ‘ |

> (deep-car? ’a ’(a.b c))
#t I

> (deep-car? ’a ’(b a c)) |
#f

> (deep-car? ’a *((x y) (z (a b) ¢) d))
#t

> (deep-car? ’a ’(((a))))
#t

Fill in the blanks below to complete the definition.

(define (deep-car? symbol lst)
oy

(if (Zeat? 1st)

(or (eq? symbol (fﬁ’”f Lot))
(helper symbol Je 3
-:jfi~(T })
(define (helper symbol lsts)
(cond ((null? 1sts) e)
Qo
((deep-Agph? symbol (car lsts))
#t)
C i iy D L e
(else ‘nevptr Tivaen oy 33)

L

Question 5 (7 points):

In the early 1960s, the IBM 1620 computer did arithmetic one digit at a tillne, just the
way you learned in elementary school, looking up the digit-by-digit sums or products in a
table. We’re going to simulate that.

You are given a table in which the rows and columns are digits (0 to 9) and what’s stored
in each table entry is a two-element li»sf‘reprgsenting the two-digit sum. For example:
oyt ot K '
(put 2 3 ’(0 5))
(put 8 9 *(1 7))
copnre
We want a procedure add that takes two nonnegative integers, represented as lists of digits,
and adds them, returning another list of digits:
‘ Savten Cp
> (add (3 7) ’(4 5))
(8 2)

because 37 + 45 = 82. Note: Don’t worry about extra leading zeros in the result. For
example, this is okay:

> (add ’(3 7) (4 5)) e
(00 8 2) (ot

Fill in the blanks below:
(define (add ni1 n2)

(cond ((empty? nl) n2)
((empty? n2) n1l)

(else (let ((result { o+ i lott o AT })
(sentence ‘adA (v U0 wVY 0N v (e (it yomul)))
A - 1IN
(o ves ™)

