
CS61A, Fall 1994
Midterm #2

Question 1 (4 points):

What will Scheme print in response to the following expressions? Also, draw a ``box and pointer'' diagram for
the result of each expression:

(cons (append '(a b) '(c d)) '(e f))

(list (cons 'a 'b) (list 'c 'd) 'e)

(caaddr '((a b c d e) (f g h i j) (l m n o p) (q r s t u)))

(cons 'a (cdr '(((b)))))

Question 2 (5 points):

Recall that the definition of a list is that it's either the empty list or a pair whose cdr is a list. This definition
says nothing about the elements of the list. For example,

(1 2 (3 . 4) (5 . 6) 7)

is a list of five elements, even though two of the elements are pairs that aren't lists.

We'll define a deep list as a list in which every element is either a deep list or not a pair. Equivalently, a deep
list is a structure made of pairs in which the cdr of every pair, including the ones in the elements, is a list.

Write the predicate deep-list? that takes any Scheme object as its argument, returning #t if the argument
is a deep list.

Question 3 (5 points):

We want to write a program that uses the time of day as an abstract data type. We'll represent times internally
as a list of three elements, such as (11 23 am) for 11:23 am. For the purposes of this problem, assume that
the hour part is never 12, so there's never any special problems about noon and midnight. The hour will be a
number 1--11, the minute will be a number 0--59, and the third element (which we'll call the category) must
be the word am or the word pm. Here's our implementation:

(define (make-time hr mn cat) (list hr mn cat))
(define hour car)
(define minute cadr)
(define category caddr)

(a) This is a good internal representation, but not a good representation for the user of our program to see.
Write a function time-print-form that takes a time as its argument and returns a word of the form
3:07pm.

(b) If we want to ask whether one time is before or after another, it's convenient to use the 24-hour
representation in which 3:47 pm has the form 1547. Write a procedure 24-hour that takes a time as its
argument and returns the number that represents that time in 24-hour notation:

CS61A: Midterm #2--Fall 1994

1

> (24-hour (make-time 3 47 'pm))
1547

Respect the data abstraction!

(c) Now we decide to change the internal representation of times to be a number in 24-hour form. But we
want the constructor and selectors to have the same interface so that programs using the abstract data type
don't have to change. Rewrite the constructor and selectors to accomplish this.

Question 4 (5 points):

The example of message passing on page 141 deals only with functions of one argument, such as the
magnitude of a complex number. In this problem our goal is to extend the idea of message passing to
two-argument functions like addition. We want to do this without violating the spirit of ``intelligent data
objects''; that is, a complex number should know how to add itself to another one.

We define the two-argument functions in the following form:

(define (+complex z1 z2)
 ((z1 'add) z2))

Your job is to modify make-rectangular so that complex numbers understand this new message. For
your convenience here is the code from the book:

(define (make-rectangular x y)
 (define (dispatch m)
 (cond ((eq? m 'real-part) x)
 ((eq? m 'imag-part) y)
 ((eq? m 'magnitude)
 (sqrt (+ (square x) (square y))))
 ((eq? m 'angle) (atan y x))
 (else
 (error "Unknown op -- MAKE-RECTANGULAR" m))))
 dispatch)

Take a peek at the solutions

CS61A: Midterm #2--Fall 1994

2

	CS61A: Midterm #2--Fall 1994

