CS 61A Structure and Interpretation of Computer Programs

F&H 2017 FiNAL

INSTRUCTIONS

e You have 3 hours to complete the exam.

e The exam is closed book, closed notes, closed computer, closed calculator, except three hand-written 8.5" x 11"
crib sheets of your own creation and the official CS 61A midterm study guides.

e Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

POLICIES & CLARIFICATIONS

e If you need to use the restroom, bring your phone and exam to the front of the room.

e Before asking a question, read the announcements on the screen/board. We will not answer your question
directly. If we decide to respond, we’ll add our response to the screen/board so everyone can see the clarification.

e For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

e Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

http://berkeley.edu

1. (10 points) Calling All Values

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. The interactive interpreter displays the
repr string of the value of a successfully evaluated expression, unless it is None. Write “FUNC” to indicate a

functional value.

The first two rows have been provided as an example.

Assume that you have started python3 and executed all the code to the left of the table first.

fandv = lambda f, x: [f, f(x)]

def pv(v):
print(v)
return v
dbl = lambda x: 2*x
Idbl = lambda: pv(lambda x: x) or pv(dbl)

def upto(n):
items = []
for i in range(n):
items.append (i)
yield items
def av(v):
v.append(-1)
return v

def rc(f, n):
def g(y): return [n, £(y)]
return rc(g, n // 2) if n>2 else g(n)

def mx(x):
x += 3

Expression Interactive Output
[2, 3] [2, 3]
print((2, 3)) (2,3)

fandv(print, print)

Idbl() (pv(17) and pv(1l))

[av(x) for x in upto(2)]1[0]

rc(lambda x: x, 9)

z=4
mx (z)
print(z)

© 00N U P WN+~

=
= O

12

= e
Sw

Name: 3

2. (10 points) Environmentally Friendly

Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

e Add all missing names and parent annotations to frames.
e Add all missing values created or referenced during execution.

e Show the return value for each local frame.

Use box-and-pointer notation for list values. You do not need to write index numbers or the word “list”.

def ice(): Global frame

vic = [3,2,1,[0]] ice
vic = vic.pop()
vic.append(vic)
yu = lambda y: y[y[0]]
def tor(ri): f1: [parent=___ |
def skate(vic): |
nonlocal yu |
if yu == vic: |
|
|

—+—» func ice() [parent=Globall

yu = skate
return [0]
return yu(skate(yu)) Return value
return tor(yu)
ice(Q)

f2: [parent=___ |

Return value

£3: [parent=___ |

Return value

f4: [parent=___ |

Return value |

3. (8 points) Get the Point? Fill in the environment diagram that results from executing each block of code
below until the entire program is finished or an error occurs. Use box-and-pointer notation for lists. You don’t
need to write index numbers or the word list. Erase or cross out any boxes or pointers that are not part of a

final diagram.

a. (3 pt)
t = [1,[2,[3]11,[4,51]] |Qlobal frame
t.append(t[:]) ¢

b. (2 pt)
t = [1, 2, 3] Global frame
t[l.s] = [t] t
t.extend(t) ——

c. (3 pt)

t = [[1,2] > [3’4]]
t[0] .append(t[1:2])

Global frame
_t o

Name: 5

4. (14 points) O! Pascal

Pascal’s Triangle is perhaps familiar to you from the diagram below, which shows the first five rows.

1

11416411

Every square is the sum of the two squares above it (as illustrated by the arrows showing here the value 4
comes from), unless it doesn’t have two squares above it, in which case its value is 1.

(a) (4 pt) Given a linked list that represents a row in Pascal’s triangle, return a linked list that will represent
the row below it. See page 2 of the Midterm 2 study guide for the definition of the Link class. However, your
solution must not use L.__getitem__(k) (or L[k]). You may not need all the lines.

def pascal_row(s):

>>> a = Link.empty

>>> for _ in range(5):
a = pascal_row(a)
print(a)

<1>

<1 1>

<12 1>

<133 1>

<1464 1>

if s is Link.empty:
return _____________________

start = Link(1)
last, current = start, s

return start

(b) (4 pt) Fill in the procedure below to create a full Pascal Triangle of height k. Represent the entire triangle
as a linked list of the rows of the triangles, which are also linked lists. Again, your solution must not use
L.__getitem__(k) method (or L[k]).

def make_pascal_triangle(k):

>>> make_pascal_triangle(5)
<K1> <1 1><1 21><1331><1464 1>

if k == 0:

1]
—
M.
=]
=
~\
N
g3

Irow

end =

result = end

for _ in range(k-1):

Irow

end

return result

Name: 7

(c) (4 pt) Pascal’s Triangle contains many patterns within it. For instance, consider the diagonals. The first
diagonal (going down the left side) is just a series of 1s. The second diagonal (consisting of the second elements
of each row) is the counting numbers. The third diagonal is the triangular numbers.

Ones

Counting

Triangular

1141641

Fill in the procedure below to take in a Pascal Triangle (represented by a linked list from part b) and return
a linked list containing the indicated diagonal. As before, your solution must not use L.__getitem__(k)
(or L[k]), and you may not need all the lines.

def diagonal(tri, n):

>>> triangle = make_pascal_triangle(5)
>>> print(diagonal(triangle, 1))
<t111 1>

>>> print(diagonal(triangle, 2))
<123 4>

>>> print(diagonal(triangle, 3))

<1 3 6>

if tri is Link.empty:

p, J = tri.first, 1

return

(d) (2 pt) Circle the © expression that describes the number of integers contained in the value of the expression
make_pascal_triangle(n).

o(1) O(logn) O(n) O(n?) o(2™) None of these

5. (13 points) Level-Headed Trees A level-order traversal of a tree, T, traverses the root of T' (level 0), then
the roots of all the branches of T' (level 1) left to right, then all the roots of the branches of the nodes traversed
in level 1, (level 2) and so forth. Thus, a level-order traversal of the tree

visits nodes with labels 1, 2, 3, 4, 5, 6, 7, 8, 9 in that order.

(a) (9 pt) Fill in the following generator function to yield the labels of a given tree in level order. All trees are
of the class Tree, defined on page 2 of the Midterm 2 Study Guide. The strategy is to use a helper function
that yields nodes at one level, and then to call this function with increasing levels until a level does not yield
any labels. You may not need all the lines.

def level_order(tree):
"""Generate all labels of tree in level order."""
def one_level(tree, k):
"""Generate the labels of tree at level k."""

level, count = 0, True
while count:

count = 0

Name: 9

(b) (4 pt) Write a function that, given a Python list of values and a tree, returns whether the list contains the
labels of the tree in level order. Assume tree is an instance of the Tree class on your Midterm 2 Study Guide.

def same_level_order(tree, s):
"""Return True if and only if list s contains the labels of tree in level order.

>>> t = Tree(1, [Tree(2, [Tree(3), Tree(4)]), Tree(5)])
>>> same_level_order(t, [1, 2, 5, 3, 4])

True

>>> same_level_order(t, [1, 2, 3, 4, 5])

False

>>> same_level_order(t, [1, 2, 5, 3, 4, 6])

False

>>> same_level_order(t, [1, 2, 5, 3])

False

return False

k += 1

return

10

6. (10 points) Simplify! Simplify! For this problem, consider a very small subset of Scheme containing only

if expressions, (if pred then-part else-part), and atoms including symbols, #t for true, and #f for false.
Such expressions can be simplified according to the following transformation rules. Here, P, E1, and E2 are
Scheme expressions in the subset, and P', E1', and E2' are their simplified versions.

e The expression (if P E1 E2) simplifies to
— E1'" if P! is #t.
— E2'" if P! is #f.
E1' if E1' equals E2'.
— Otherwise, an if expression with P', E1', and E2' as the predicate, then-part, and else-part.

e Any expression, E, simplifies to #t if E is known to be true (see below); or to #f if it is known to be false.

e Finally, in the expression (if P E1 E2), P' is known to be true while simplifying E1 and is known to be
false while simplifying E2. Initially, only #t is known to be true and only #f is known to be false.

Fill in the blanks on the next page so that (simp E) returns the simplified version of E according to these
rules, and the helper function (simp-context E known-t known-f) returns the simplification of E given that
known-t is a list of expressions known to be true, and known-f is a list of expressions known to be false.

For convenience, assume that (nth k L) is defined to return element & of list L (where 0 is the first), and that
(in? E L) is defined to return true if and only if F is equal? to a member of the list L.

scm> (simp '(if a b c))
(if a b ¢)

scm> (simp '(if a b b))
b

scm> (simp '(if #t (if #f a b) c))
b

scm> (simp '(if a (if a b c) (if a d e)))
(if a b e)

scm> (simp '(if (if #t a b) (if a d e) f))
(if a d f)

scm> (simp '(if (if a b b) (if b ¢ d) (if e £ £)))
(if b c £)

scm> (simp '(if (if a b c) (if (if abc) xy) (if (if ab c) y 2)))
(if (if a b c) x z)

scm> (simp '(if (if a b ¢c) (if (if a (if a b b) c) d e) £))
(if (if a b c) d £f)

Name: 11

(define (simp expr)

(simp-context expr ______ ____))
(define (simp-context expr known-t known-f)
(define simp-expr (if (pair? expr)
(simp-if (nth 1 expr) (nth 2 expr) (nth 3 expr) known-t known-f)
expr))
(cond (e #t)
(e #1)
(else o)))
(define (simp-if pred then-part else-part known-t known-f)
(let ((simp-pred (simp-context pred ________________________ ___ o __)))
(define simp-then
___)
(define simp-else
___)
(cond ((equal? simp-pred #t) simp-then)
., ,—,,,,,——,—————————————— simp-else)
(Y, ,—,,—,—,——,———————————————— simp-then)
(else __ L)))

7. (10 points) Friendship Consider the table friends, defined

CREATE TABLE friends AS
SELECT "Jerry" AS pl, "Neil" AS p2 UNION

SELECT "Neil" , "Jerry" UNION
SELECT "Neil" , '"John" UNION
SELECT "John" , "Neil" UNION
SELECT "John" , "Paul" UNION
SELECT "Paul" , "John";

This particular definition is intended as an example; your code should work for any definition of friends in
which all pairs of friends appear in both orders and people are not friends of themselves.

(a) (3 pt) Define a table friends2 containing friends-of-friends (or friends?). For example, Jerry and Neil are
friends, Neil and John are friends, so Jerry and John are friends of friends. Be careful! Jerry is not a second
degree friend to himself. The column names should be p1 and p2, as in friends.

Expected output:

sqlite> SELECT * FROM friends2;
Jerry|John

John|Jerry

Neil |Paul
Paul |Neil

CREATE TABLE friends2 AS

SELECT ___ _ _ _

Name: 13

(b) (7 pt) We could go on to define a table of friends® (such as Jerry|Paul and Paul|Jerry), but let’s go further
and define a table of friends® called friends5 that contains pairs of friends of friends of friends of friends of
friends. We want pairs of people who are friends® but are not friends, friends?, friends®, or friends*. Our
small sample friends table has no such pairs, alas, but we can always dream.

To tell that a pair of people are strictly friends®, we can build a table containing pairs of people plus a
“friendship distance” for all distances up to 5. Then we can select just those pairs that appear at distance 5
but never appear at a lesser distance.

CREATE TABLE friendsb AS
WITH distances(pl, p2, dist) AS (
SELECT from friends UNION

SELECT

