
CS 61A Midterm #3

Your name

TA’s name Discussion section number

A random five-digit number:

Circle the last two letters of your login (cs61a-xx)

a b c d e f g h i j k l m n o p q r s t u v w x y z 1 2 3

a b c d e f g h i j k l m n o p q r s t u v w x y z

This exam is worth 40 points, or about 13% of your total course grade. It includes two
parts. The individual exam (this part) is worth 35 points, and the group exam is worth 5
points. The individual exam contains six substantive questions, plus the following:

Question 0 (1 point): Fill out this front page correctly and correctly copy your random
five-digit number to the top of each of the following pages. (This is to make sure the pages
of your exam stay together even if the staple comes out.)

This booklet contains ten numbered pages including the cover page. Put all answers on
these pages, please; don’t hand in stray pieces of paper. This is an open book exam.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

Our expectation is that many of you will not complete one or two of these questions. If
you find a question especially difficult, leave it for later; start with the ones you find easier.

If you want to use procedures defined in the book or reader as part of your
solution to a programming problem, you must cite the page number on which
it is defined so we know what you think it does.

READ AND SIGN THIS:

I certify that my answers to this exam are all my own
work, and that I have not discussed the exam questions or
answers with anyone prior to taking this exam.

If I am taking this exam early, I certify that I shall not
discuss the exam questions or answers with anyone until
after the scheduled exam time.

0 /1

1-2 /11

3 /3

4 /6

5 /5

6 /9

total /35
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Question 1 (6 points):

What will the Scheme interpreter print in response to each of the following expressions?
If any expression results in an error or contains a loop, just write “Error”. Also, draw a
“box and pointer” diagram for the result of each expression. Hint: It’ll be a lot easier if
you draw the box and pointer diagram first !

> (let ((x (list 1 2 3 4)))
(set-cdr! (cddr x) (car x))
x)

> (let ((y (list 1 2 3 4)))
(set-car! (cddr y) (cddddr y))
y)

Question 1 continues on the next page.
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Your five-digit number:

Question 1 continued:

> (let ((z (list 1 2 3 4)))
(set-car! (cddr z) z)
z)

Question 2 (5 points):

Show the first five elements of these two streams.

> (define (madness x y)
(if (even? x)

(- x y)
y))

> (define boss (cons-stream 1 (stream-map madness boss truck)))
> (define truck (cons-stream 3 (stream-map + boss truck)))

boss

truck
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Question 3 (3 points):

Here is a class definition, implemented in ordinary Scheme instead of using define-class:

(define make-thingo
(let ((foo ’yakko))
(lambda (baz)

(let ((garply ’wakko) (floop (make-bear)))
(lambda (zot)
(cond ((eq? zot ’yes)

(lambda (xyzzy)
(list xyzzy baz)))

((eq? zot ’no)
(lambda () garply))

(else (floop zot))))))))

For each symbol in the table below, write the letter of the kind of thing it is in object-
oriented terminology. Each letter should be used exactly once.

foo (A) parent

baz (B) class variable

garply (C) method argument

floop (D) instance variable

zot (E) instantiation variable

xyzzy (F) message
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Your five-digit number:

Question 4 (6 points):

Write a procedure duplicate-elements! that takes a list and duplicates its elements,
using mutation. You may create new pairs, but every pair in the original list must still be
part of the list at the end. The return value of duplicate-elements! is unimportant.

Here are some examples of how duplicate-elements! should work:

> (define a (list))
> (duplicate-elements! a)
> a
()

> (define c (list 1 2 3))
> (duplicate-elements! c)
> c
(1 1 2 2 3 3)

> (define b (list 1))
> (duplicate-elements! b)
> b
(1 1)

> (define d (list (list 1 2)))
> (duplicate-elements! d)
> d
((1 2) (1 2))

(define (duplicate-elements! lst)
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Question 5 (5 points):

We want to add functions that take any number of arguments to the metacircular evaluator.
The syntax for this is based on how Scheme does it: use a single name (without parentheses)
instead of a list of names for a procedure’s formal parameters. This allows us to use
procedures like new-odds (left), in addition to old-odds (right).

; The new way
; Look, no parentheses!
> (define new-odds

(lambda nums(lambda nums(lambda nums
(filter odd? nums) ))

> (odds 7 8 4 5 6 7)
(7 5 7)

; The existing way
; (which should still work)
> (define old-odds

(lambda (nums)
(filter odd? nums) ))

> (odds (list 7 8 4 5 6 7))
(7 5 7)

Your code should handle the following kinds of expressions:

(lambda (x y z) ...) ; existing lambda with a fixed number of arguments
(lambda args ...) ; new lambda with no parentheses

Don’t worry about handling expressions like this:

(lambda (x y . args) ...) ; real Scheme lets you mix the two this way

Here are some relevant procedures from the original Metacircular Evaluator.

1. (define (mc-apply procedure arguments)
2. (cond ((primitive-procedure? procedure)
3. (apply-primitive-procedure procedure arguments))
4. ((compound-procedure? procedure)
5. (eval-sequence
6. (procedure-body procedure)
7. (extend-environment (procedure-parameters procedure)
8. arguments
9. (procedure-environment procedure))))
10. (else (error "Unknown procedure type -- APPLY" procedure))))
11.
12. (define (extend-environment vars vals base-env)
13. (if (= (length vars) (length vals))
14. (cons (make-frame vars vals) base-env)
15. (if (< (length vars) (length vals))
16. (error "Too many arguments supplied" vars vals)
17. (error "Too few arguments supplied" vars vals))))
18.
19. (define (make-frame variables values)
20. (cons variables values))

6



Your five-digit number:

Question 5 continued:

Change mc-apply, extend-environment, and/or make-frame to make this work. You do
not need to worry about error handling.

For this problem, use the sections below to show which lines from the program on the
previous page you are changing. If you want to replace a single line, write the same
number in both spaces. You are not required to use both sections.

Replace lines through (inclusive) with the following:

Replace lines through (inclusive) with the following:
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Question 6 (9 points):

Vectors are created with a fixed size; to add an element to the end of a vector we have to
create a new vector with size n + 1.

To avoid this, consider the following ADT called vector-chain. A vector-chain is
essentially a sequence with no size limit. You can set any element, and it automatically
grows to be big enough to fit that element.

> (define vc (make-vector-chain))
> (vc-set! vc 28 ’hello)
okay
> (vc-ref vc 28)
hello

The pictures to the right show the structure
of vc just before the call to vc-set! (top)
and just after the call to vc-set! (bottom).
Notice how the vector chain has automati-
cally grown, and the 28th cell now contains
hello.
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Here’s how it works: A vector-chain is made up of several 11-element vectors. The
last vector’s 11th element is #f. The 11th element in every other vector points to the
next vector in the chain.

You can see this in the second picture (above). The last element of the first vector points
to the entire second vector, the last element of the second vector points to the entire third
vector, and the last element of the third vector is #f.

Here is the constructor for a vector-chain:

(define (make-vector-chain)
(let ((result (make-vector 11)))
(vector-set! result 10 #f)
result))

In this problem, you will implement vc-set!. But before we can write vc-set!, we need
a way to extend the chain if we don’t have enough space.

Question 6 continues on the next page.
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Your five-digit number:

Question 6 continued:

(a) Write a helper procedure vc-extend! that adds one more 11-element vector to a vector
chain, making sure the new vector’s last element is #f. The argument to vc-extend! is
the last vector in an existing vector chain.

The pictures to the right show the structure of new after each line in the following example:

> (define new (make-vector-chain))

> (vc-extend! new)
okay

> (vc-extend! (vector-ref new 10))
okay

(define (vc-extend! last-in-chain)
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Question 6 continues on the next page.
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Question 6 continued:

(b) Now write vc-set!. Use vc-extend! to extend the chain as necessary to ensure that
there is always enough space.

(define (vc-set! vc index value)
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