
CS 61A Final Exam

Your name A random five-digit number:

Circle the last two letters of your login (cs61a-xx)

a b c d e f g h i j k l m n o p q r s t u v w x y z 1 2 3

a b c d e f g h i j k l m n o p q r s t u v w x y z

This exam is worth 70 points, or about 23% of your total course grade. The exam contains
14 questions.

This booklet contains 14 numbered pages including the cover page. Put all answers on
these pages, please; don’t hand in stray pieces of paper. This is an open book exam.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

If you want to use procedures defined in the book or reader as part of your
solution to a programming problem, you must cite the page number on which
it is defined so we know what you think it does.

*** IMPORTANT ***

Check here if you are one of the people with whom we ar-
ranged to replace a missed/missing exam with other exam
scores:

*** IMPORTANT ***

If you have made grading complaints that have not yet
been resolved, put the assignment name(s) here:

READ AND SIGN THIS:

I certify that my answers to this exam are all my own
work, and that I have not discussed the exam questions or
answers with anyone prior to taking this exam.

If I am taking this exam early, I certify that I shall not
discuss the exam questions or answers with anyone until
after the scheduled exam time.

1–2 /7

3 /4

4 /7

5-6 /7

7 /6

8 /4

9 /6

10 /4

11 /6

12 /6

13 /7

14 /6

total /70

1

Question 1 (3 points):

What will the Scheme interpreter print in response to each of the following expressions?
If any expression results in an error or infinite loop, just write “Error”.

> (define (foo x)
(define count (+ x count))
count)

> (define count 0)
> (foo 3)

> (foo 4)

> count

Question 2 (4 points):

(a) Give an example of something that is a pair but not a list. If there is no such thing,
write “impossible”.

(b) Give an example of something that is a list but not a pair. If there is no such thing,
write “impossible”.

(c) What will the Scheme interpreter print in response to the second expression below? If
it results in an error or infinite loop, just write “Error”.

> (define my-stream (cons-stream 1 my-stream))
> (list (pair? my-stream) (list? my-stream))

2

Your five-digit number:

Question 3 (4 points):

What is the order of growth in time of each of the following procedures? Assume “N” is
the length of the list.

(define (pinky lst)
(if (null? lst)

0
(+ (accumulate + 0 lst) (pinky (cdr lst)))))

Θ(1) Θ(N) Θ(N2) Θ(N3) Θ(2N)

(define (brain lst)
(if (null? lst)

0
(+ (+ (car lst) (brain (cdr lst)))

(brain (cdr lst)))))

Θ(1) Θ(N) Θ(N2) Θ(N3) Θ(2N)

3

Question 4 (7 points):

Consider the following code:

STk> (define (foo x)
(let ((x 7) (f (lambda (z) (+ z x))))
(set! x 3)
(f 10)))

STk> (foo 9)

Running it will create the following environment diagram. Complete the diagram by
adding in five missing arrows and the result of the set!, then fill in the result of the final
expression.

G
 foo

E1
z 10

p: (x)
b: (let ((x 7)
 ...)
 ...)

E2
x 9

E3
x 7
f

p: (z)
b: (+ z x)

p: (x f)
b: (set! x 3)
 (f 10)

4

Your five-digit number:

Question 5 (3 points):

Given the following code:

(define (foo x y)
(bar 1 y))

(define (bar a b)
(* x y))

(foo 3 4)

What is the result of the final expression using lexical scope?

What is the result of the final expression using dynamic scope?

(If any expression causes an error, just write “Error”.)

Which does Scheme use? Lexical scope Dynamic scope

Question 6 (4 points):

Pick the best answer for the questions below.

(a) Ben Bitdiddle is able to send chat messages to Alyssa P. Hacker, but he isn’t getting
the replies she sends. Which of the following is most likely the problem?

His client didn’t set a callback.

His client didn’t finish the three-way handshake.

The server isn’t sending out updated client-lists when clients log on.

The server isn’t forwarding chat messages to their destinations.

(b) Which of the following fixes for the Therac-25 would have prevented the most accidents?

Add hardware interlocks, like the earlier Therac-20.

Log any software-detected abnormalities.

Ask operators to confirm high radiation doses.

Use serializers to prevent concurrency issues.

5

Question 7 (6 points):

(a) Consider the following code:

> (define cereal-1 (make-serializer))
> (define cereal-2 (make-serializer))
> (define z 10)
> (parallel-execute (cereal-1 (cereal-2 (lambda () (set! z (+ z 20)))))

(cereal-2 (cereal-1 (lambda () (set! z 42)))))

Which of the following problems are possible with the code above?

Y N Incorrect results

Y N Deadlock

Y N Inefficiency (missed opportunity for parallelism)

(b) Consider the following code:

> (define x 5)
> (define y 6)
> (define x-serializer (make-serializer))
> (define y-serializer (make-serializer))

> (parallel-execute
(x-serializer (y-serializer (lambda () (set! x (+ x 5)))))
(x-serializer (y-serializer (lambda () (set! x (* x x)))))
(x-serializer (y-serializer (lambda () (set! y (+ y 2))))))

Which of the following problems are possible with the code above?

Y N Incorrect results

Y N Deadlock

Y N Inefficiency (missed opportunity for parallelism)

6

Your five-digit number:

Question 8 (4 points):

Consider the following input to the lazy evaluator:

(define count 0)

(define (akbar arg)
(let ((hoho count))
(set! count 3)
(set! hoho arg)
hoho))

(define (jeff)
(set! count 5)
42)

(define binky (akbar (jeff)))

After evaluating these expressions, what is the value of count?

What is the value of binky?

(If any expression generates an error or infinite loop, just write “Error”. If
either value is a promise, just write “Promise”.)

7

Question 9 (6 points):

Consider the following MapReduce query:

(define (count-words input)
(list (make-kv-pair (kv-key input) (length (kv-value input)))))

(mapreduce count-words + 0 "/shakespeare")

The result is a stream of key-value pairs, where the keys are the names of Shakespeare
plays, and the values are the number of words in the play.

((a-lovers-complaint . 2568) (a-midsummer-nights-dream . 17608) ...)

(a) Change either the mapper or the reducer (but not both) to find the length of the
longest line in each play. (You can use an existing Scheme primitive, or write an entirely
new procedure. If you change the reducer, you can also change the base case.) Show your
new call to mapreduce.

(b) Change either the mapper or the reducer (but not both) to count the number of times
the word “thou” appears in each play. (You can use an existing Scheme primitive, or write
an entirely new procedure. If you change the reducer, you can also change the base case.)
Show your new call to mapreduce.

8

Your five-digit number:

Question 10 (4 points):

The procedure largest-value takes a list of key-value pairs and returns the pair with
the largest value:

> (define assoc-list (list (make-kv-pair a 1)
(make-kv-pair b 42)
(make-kv-pair c 9005)))

> (largest-value assoc-list)
(c . 9005)

You may assume the argument to largest-value is never the empty list.

Complete this implementation of largest-value by defining lv-helper.

(define (largest-value assoc-list)
(accumulate lv-helper

(car assoc-list)
(cdr assoc-list)))

9

Question 11 (6 points):

The function check-children is supposed to return #t if every node in a Tree has a datum
equal to its number of children. Fix all errors and data abstraction violations (DAVs) in
the following incorrect implementation of check-children.

Note: although this question is worth 5 points, there may be anywhere from 1 to 10 mistakes
in this code.

(define (check-children tree)

(or (= (first tree) (length (cdr tree)))

(accumulate (lambda (x y) (and x y))

#f

(every check-children

(cdr tree)))))

10

Your five-digit number:

Question 12 (6 points):

Define the following stream. You may use helper procedures.

> (ss strm 15)
(1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 ...)

(Note: the underlines are just to clarify the problem for you; this is a single stream of
numbers.)

11

Question 13 (7 points):

Consider the following object-oriented code for an animal class:

;; The animal class has a last-eaten instance variable
;; that always contains the thing that was last eaten.
(define-class (animal)
(instance-vars (last-eaten #f))
(method (eat something)
(set! last-eaten something)))

(define bugs-bunny (instantiate animal))
(ask bugs-bunny ’eat ’carrot)

(a) We want to make a fish class. (A fish is a kind of animal.) Find and fix the problems
in the fish class by adding any necessary code. There are at most four problems to fix.

(define-class (fish)

(instance-vars (everything-eaten ’())

(method (eat something)

(cons something everything-eaten))

(method (worms-eaten)

(length (filter (lambda (thing-eaten) (equal? thing-eaten ’worm))

everything-eaten))))

Question 13 continues on the next page.

12

Your five-digit number:

Question 13 continued:

(b) A goldfish behaves exactly like a fish, but also has an owner. We are going to write
a goldfish class.

Y N Should you make fish a parent of goldfish?

Y N Should you make animal a parent of goldfish?

Y N Should you include an instance variable (or instantiation variable)
called owner in the goldfish class?

Y N Should you include an instance variable (or instantiation variable)
called last-eaten in the goldfish class?

Y N Should you include an instance variable (or instantiation variable)
called everything-eaten in the goldfish class?

Y N Should you write an owner method for the goldfish class?

Y N Should you write a new version of the eat method?

Y N Should you write a new version of the worms-eaten method?

13

Question 14 (6 points):

Write logic (query) language rules for every-other, a relation between two lists that is
satisfied if and only if the second list is the same as the first list, but with every other
element removed.

> (every-other (frodo merry sam pippin) ?x)
(every-other (frodo merry sam pippin) (frodo sam))
> (every-other (gandalf) ?x)
(every-other (gandalf) (gandalf))

Do not use lisp-value!

14

