
CS 61A Midterm #1 — September 24, 2008

Your name

login: cs61a–

Discussion section number

TA’s name

This exam is worth 40 points, or about 13% of your total course grade. The exam contains
7 substantive questions, plus the following:

Question 0 (1 point): Fill out this front page correctly and put your name and login
correctly at the top of each of the following pages.

This booklet contains 7 numbered pages including the cover page. Put all answers on these
pages, please; don’t hand in stray pieces of paper. This is an open book exam.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

Our expectation is that many of you will not complete one or two of these questions. If
you find one question difficult, leave it for later; start with the ones you find easier.

If you want to use procedures defined in the book or reader as part of your
solution to a programming problem, you must cite the page number on which
it is defined so we know what you think it does.

READ AND SIGN THIS:

I certify that my answers to this exam are all my own
work, and that I have not discussed the exam questions or
answers with anyone prior to taking this exam.

If I am taking this exam early, I certify that I shall not
discuss the exam questions or answers with anyone until
after the scheduled exam time.

0 /1

1–2 /9

3 /3

4 /6

5 /8

6 /6

7 /7

total /40

1



Question 1 (5 points):

What will Scheme print in response to the following expressions? If an expression produces
an error message, you may just write “error”; you don’t have to provide the exact text
of the message. If the value of an expression is a procedure, just write “procedure”; you
don’t have to show the form in which Scheme prints procedures.

(accumulate word (map (lambda (x) (remainder x 2))
’(1 2 3 4 5 6 7)))

(or #f 3 #t)

((lambda (x) (x x x)) 7)

(let ((+ *) (a (+ 2 3))) (+ a 10))

(caaddr ’((a b c d e) (f g h i j) (k l m n o))

Question 2 (4 points):

What will Scheme print in response to the following expressions? If an expression produces
an error message, you may just write “error”; you don’t have to provide the exact text of
the message. Also, draw a box and pointer diagram for the value produced by
each expression.

(list (cons ’(1) ’(2)) (list ’(1) ’(2)))

(cons (cons 1 2) (append ’(1) ’(2)))

2



Your name login cs61a–

Question 3 (3 points):

(define (foo x) ’done)

What is the result of (foo (foo)) (yes, this is what we mean!)

a. in normal order

b. in applicative order

(define (inc x) (+ x 1))

c. True or False: In evaluating (+ (inc 3) (inc 3)), + gets called more in normal than
in applicative order.

True False

3



Question 4 (6 points):

(a) What is the order of growth in time of adding below, in terms of n, the length of
its argument? (Note: the count procedure takes time Θ(n).) Also, does adding

generate an iterative or a recursive process?

(define (adding sent)
(if (= (count sent) 0)

0
(+ (first sent) (adding (bf sent)))))

Θ(n) Θ(n2) Θ(2n) Not enough information to know

Iterative Recursive

(b) Consider the three procedures below:

(define (foo n temp)
(if (= n 0) temp

(foo (- n 1) (+ temp n))))

(define (bar n)
(+ (foo n 0) (foo n 0)))

(define (baz n)
(foo (foo (foo n 0) 0) 0))

Does procedure foo generate an iterative or a recursive process?

Iterative Recursive

What is the order of growth in time of procedure foo?

Θ(n) Θ(n2) Θ(2n) Θ(log n)

What is the order of growth in time of procedure bar?

Θ(n) Θ(n2) Θ(2n) Θ(log n)

What is the order of growth in time of procedure baz?

Θ(n) Θ(n2) Θ(n3) Θ(n4)

4



Your name login cs61a–

Question 5 (8 points):

For this question (both parts), use only higher order procedures, not recursion,
even in helper procedures!

(a) Write a procedure make-map-adder that, given a number, returns a function that will
add that number to each number in a sentence of numbers.

Example call:

> ((make-map-adder 5) ’(1 3 5 8))
(6 8 10 13)

(b) Now write a procedure make-map-maker that takes a two-argument function fn as its
argument, and returns a function of one argument arg that returns a function that applies
fn to arg and each word of a sentence. For example, (make-map-maker +) should return
the function make-map-adder from part (a).

5



Your name login cs61a–

Question 6 (6 points):

Note: Use recursion, not higher-order functions, to solve this problem.

Write a procedure insert-multiples that takes a sentence, a word, a position number,
and a count. (The last two are nonnegative integers.) It should return the result of
inserting the given word into the sentence, at the given position, as many times as count
states. Assume the position is legal (i.e., it exists in the sentence). For example:

STk> (insert-multiples ’(this is a sentence) ’balloon 2 4)
(this is balloon balloon balloon balloon a sentence)

6



Question 7 (7 points):

Alyssa P. Hacker has written the constructor and selectors for a three-piece data structure:

(define (make-game r p s)
(list r p s))

(define rock car)
(define paper cadr)
(define scissors caddr)

(a) Now Ben Bitdiddle plays a trick on Alyssa by redefining paper:

(define paper cdar)

Help Alyssa by redefining as many of the other three procedures as necessary so that they
work correctly with Ben’s new version of paper.

(b) Each of the three components of a game (rock, paper, and scissors) is a sentence.
Alyssa has hired Louis Reasoner to write a procedure that extracts the second word of
each sentence and puts the result in a sentence. Unfortunately, Louis doesn’t believe in
data abstraction, and he didn’t know about Ben’s change, so he wrote the following, based
on Alyssa’s original definition of the constructor and selectors:

(define (seconds game)
(list (cadar game) (cadadr game) (cadaddr game)))

Help Louis by rewriting his procedure to respect the data abstractions.

7


