
CS 61A Final Exam — December 18, 2008

Your name

login: cs61a–

This exam is worth 70 points, or about 23% of your total course grade. The exam contains
15 questions.

This booklet contains 14 numbered pages including the cover page. Put all answers on
these pages, please; don’t hand in stray pieces of paper. This is an open book exam.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

If you want to use procedures defined in the book or reader as part of your
solution to a programming problem, you must cite the page number on which
it is defined so we know what you think it does.

*** IMPORTANT ***

Check here if you are one of the people with whom we ar-
ranged to replace a missed/missing exam with other exam
scores:

*** IMPORTANT ***

If you have made grading complaints that have not yet
been resolved, put the assignment name(s) here:

READ AND SIGN THIS:

I certify that my answers to this exam are all my own
work, and that I have not discussed the exam questions or
answers with anyone prior to taking this exam.

If I am taking this exam early, I certify that I shall not
discuss the exam questions or answers with anyone until
after the scheduled exam time.

1–3 /10

4–5 /11

6–7 /6

8–9 /7

10 /4

11 /3

12 /5

13 /8

14 /8

15 /8

total /70

1

Question 1 (4 points):

What will the Scheme interpreter print in response to each of the following expressions? If
any expression results in an error, just write “ERROR”; you don’t have to give the precise
message.

(map (lambda (x) (x 3))
’(number? pair? even?))

(map (lambda (x) (x 3))
(list number? pair? even?))

Question 2 (4 points):

Circle TRUE or FALSE for each of the following:

TRUE FALSE The first procedure that we provided for you can be defined by
(define first car)

TRUE FALSE If (pair? x) returns #f, then (list? x) will always return #f also.

Question 3 (2 points):

What is the smallest number of pairs that can be included in a structure x so that the
expression

(set-cdr! (cddar x) ’cs61a)

returns a value rather than causing an error message?

2

Your name login cs61a–

Question 4 (5 points):

If the value of variable mytree is the Tree (with datum and children) shown here:

California
/ | \

Berkeley (San Francisco) Irvine

and each datum is a word or sentence, write an expression using mytree, and not using
any quoted values, that returns the word San as its value. Respect all relevant data
abstractions! Assume that the children appear in the list in the order shown above.

Question 5 (6 points):

In the OOP language (using define-class), define a Tree class with datum and children

as instantiation variables, and with a method treemap! that takes a one-argument function
as its argument, and mutates the tree by applying the function to every value in the tree.

3

Question 6 (3 points):

Write a function pairup that takes two arguments: a two-argument function fn and a
nonempty list. It returns a list of length one less than the length of the argument list, in
which each element is the value returned by fn called with two consecutive elements of the
data list, like this:

> (pairup + ’(5 7 1 22 6))
(12 8 23 28)

Question 7 (3 points):

Suppose Scheme didn’t provide pairs as a primitive data type, but did provide vectors.
We want to implement pairs as an abstract data type, using the following constructor:

(define (cons a b)
(vector ’pair a b))

Define the corresponding selectors and mutators car, cdr, pair?, set-car!, and
set-cdr!.

4

Your name login cs61a–

Question 8 (4 points):

Here’s the situation: You’re buying an airplane ticket online and you’ve just clicked on
”Show seat map.” They put a map of the airplane on your screen, with each seat marked
as available or taken. You click on a seat to reserve it.

Technique 1: They acquire a mutex as soon as you click ”show seat map” and release it
after you click on a seat and they’ve assigned it to you.

Technique 2: When you click on a seat, they acquire a mutex, see if the seat is still
available, assign it to you if available, and then release the mutex.

In one sentence, what undesirable result could happen if they use technique 1?

In one sentence, what undesirable result could happen if they use technique 2?

Question 9 (3 points):

Write a definition of the stream s1, whose first 15 elements are given here:

1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, 7, ...

(Notice we’ve used spacing to show you the pattern.)

5

Question 10 (4 points):

The TAs, trying to keep their jobs in the face of heavy budget cuts, are busily writing
discussion notes to seem useful. They want to use mapreduce to extract key elements of
Chung Wu’s existing notes. The file /chung-notes is keyed on topic (ordersofgrowth,
higherorder, logic, etc.) with a line from the notes as the value.

They want to supplement the existing notes wherever they are weakest. With this in
mind, write a mapreduce call to get the number of discussion questions written for each
topic. You can assume that all discussion questions, and only such questions, start with
a line whose first word is a number and a period, e.g., 23.; we’ve provided the predicate
exercise? that checks a line for this:

(define (exercise? line)
(and (not (empty? line))

(equal? (last (first line)) ".")
(number? (butlast (first line)))))

6

Your name login cs61a–

Question 11 (3 points):

Write a procedure an-element-satisfying to be run using the nondeterministic evalu-
ator. It takes a predicate function and a list as arguments, and returns an element from
the list for which the predicate returns a true value. If a later amb expression fails, then
an-element-satisfying will return a different element for which the predicate is true.
When there are no more such elements, it will fail. (This is the nondeterministic equivalent
to the filter? function. But don’t use filter? in your solution!) For example:

ambeval> (an-element-satisfying even? ’(5 7 28 4 19 23))
28

ambeval> try-again
4

ambeval> try-again
There are no more values of (an-element-satisfying even? ’(5 7 28 4 19 23))

7

Question 12 (5 points):

Write a query system rule or rules for doubled-element, a relation among an element and
two lists, which holds if the second list is like the first except that every occurrence of the
given element is doubled. For example:

query> (doubled-element la (ob la di ob la dah) ?x)
(doubled-element la (ob la di ob la dah) (ob la la di ob la la dah))

Do not use lisp-value!

8

Your name login cs61a–

Question 13 (8 points):

At Depth University, a student must complete at least one advanced class to graduate.
However, every advanced class has a single prerequisite, which may itself have a prereq-
uisite, and so on. Write a procedure fast-grad that, given a prerequisite Tree (with
constructor make-tree and selectors datum and children) returns the shortest possible
list of courses needed to graduate. If there is a tie, fast-grad may return any of the
shortest lists. You may assume that all leaf nodes are advanced classes, and vice versa.

For example, fast-grad called on the following tree can return (CS61A CS70 CS170) or
(CS61A CS61B CS184); either one is correct.

CS61A
/ \

CS61B CS70
/ \ \

CS61C CS184 CS170
/ \

CS164 CS150

9

Question 14 (8 points):

Alyssa asks Ben to write a procedure oddeven! that takes a list of integers as its argument,
and returns the same list, but rearranged so that all the odd numbers come first, followed
by all the even numbers:

> (oddeven! (list 8 4 15 3 6 11 9 20))
(15 3 11 9 8 4 6 20)

Note that the order of the odd numbers is unchanged, and the order of the even numbers
is unchanged. Ben is supposed to write this by mutation, not allocating any new
pairs.

After thinking about this for a while, Ben says, “This will be much easier if I can have
sentinel nodes for the odd sublist and for the even sublist. May I allocate just two pairs
for that purpose?” Alyssa agrees, and Ben immediately writes this:

(define (oddeven! nums)
(let ((odds (list ’odd))

(evens (list ’even)))
(oe-help odds odds evens evens nums)))

(define (oe-help odds oddlast evens evenlast nums)

... but then he’s called away urgently, so he asks you to finish the definition of oe-help.
Ben’s plan is that odds will be a list starting with the sentinel node and then containing
all the odd numbers examined so far; oddlast will be the last pair of that odd-number
list. Similarly, evens and evenlast will be the first and last pair of the even numbers so
far, with sentinel node.

Ben shows you this picture of the arguments to oe-help after the first three elements of
the list in the example above have been examined. The dotted lines indicate pointers that,
although unchanged so far, are irrelevant to the solution because they will be changed
later.

Finish Ben’s helper procedure. Do not allocate any new pairs.

Write your answer on the next page.

10

Your name login cs61a–

Question 14 answer goes here:

11

Question 15 (8 points):

Sometimes, when debugging a procedure with local state, you wish you could get access to
local state variables from outside. You’re going to add a special form called eval-in-env

that takes two arguments: an expression, and a procedure whose defining environment will
be used to evaluate the expression. For example, suppose we’ve said

(define count
(let ((counter 0))
(lambda ()

(set! counter (+ counter 1))
counter)))

After using the counter a few times, we could say

(eval-in-env (set! counter 0) count)

to reset the internal counter variable.

The relevant metacircular evaluator procedures are listed on the remaining pages of the
exam. On this page, write the names of all the procedures that you modify
elsewhere. New procedures can go here or on page 14.

12

Your name login cs61a–

(define (mc-eval exp env)
(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))
((quoted? exp) (text-of-quotation exp))
((assignment? exp) (eval-assignment exp env))
((definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)

(lambda-body exp)
env))

((begin? exp)
(eval-sequence (begin-actions exp) env))
((cond? exp) (mc-eval (cond->if exp) env))
((application? exp)
(mc-apply (mc-eval (operator exp) env)

(list-of-values (operands exp) env)))
(else
(error "Unknown expression type -- EVAL" exp))))

(define (mc-apply procedure arguments)
(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))
((compound-procedure? procedure)
(eval-sequence

(procedure-body procedure)
(extend-environment
(procedure-parameters procedure)
arguments
(procedure-environment procedure))))

(else
(error
"Unknown procedure type -- APPLY" procedure))))

(define (definition? exp)
(tagged-list? exp ’define))

(define (eval-definition exp env)
(define-variable! (definition-variable exp)

(mc-eval (definition-value exp) env)
env)

’ok)

13

(define (make-procedure parameters body env)
(list ’procedure parameters body env))

(define (compound-procedure? p)
(tagged-list? p ’procedure))

(define (procedure-parameters p) (cadr p))
(define (procedure-body p) (caddr p))
(define (procedure-environment p) (cadddr p))

(define (make-frame variables values)
(cons variables values))

(define (frame-variables frame) (car frame))
(define (frame-values frame) (cdr frame))

(define (add-binding-to-frame! var val frame)
(set-car! frame (cons var (car frame)))
(set-cdr! frame (cons val (cdr frame))))

(define (extend-environment vars vals base-env)
(if (= (length vars) (length vals))

(cons (make-frame vars vals) base-env)
(if (< (length vars) (length vals))

(error "Too many arguments supplied" vars vals)
(error "Too few arguments supplied" vars vals))))

14

