
CS 61A Fall 2007 Midterm 2

1. What will Scheme print in response to the following expressions? If
an expression produces an error message, you may just write “error”;
you don’t have to provide the exact text of the message. Also, draw a
box and pointer diagram for the value produced by each expression.

> (append (cons (list 1 2) (list 2 3)) '(5 6))

> (let ((y (list '(1) 2 3)))
 (cons '(7 . 8) (cdr y)))

2. Draw a box and pointer diagram for the following list.

(3 (9 (2 7) 8) ())
- ----------- --

3. We’re going to make a new ADT called a hider. A hider provides
procedures for encoding and decoding a value, along with a description.

(define (make-hider description encoder decoder)
(list description (cons encoder decoder)))

(a) Write selectors hider-description, encoder, and decoder. Given a
hider, they should return the appropriate value.

(define (hider-description hider)
 _________________________________)

(define (encoder hider)
 _________________________________)

(define (decoder hider)
 _________________________________)

(b) Now, we want to test if our hiders work properly. Given a hider
and a value, we say that the hider works properly if encoding and then
decoding gives us back what we had originally. Write works? That takes
a hider and a value and tests the hider on the value.

(define (works? hider val)

4. Louis Reasoner has been looking over the Scheme-1 code and decides
that apply-1 is doing unnecessary work. He argues that we can type
(apply (lambda (x) (* x x)) ‘(3)) in STk, so why not take advantage of
that in Scheme-1.

For reference, here is apply-1 before Louis makes his proposed change:

(define (apply-1 proc args)
(cond ((procedure? proc)

(apply proc args))
 ((lambda-exp? proc)

(eval-1 (substitute (caddr proc)
 (cadr proc)
 args
 ‘())))

He says we can change apply-1’s body to:

(define (apply-1 proc args)
(cond ((or (procedure? proc) (lambda-exp? proc))

(apply proc args))
 (else (error “bad proc: “ proc))))

Using Louis’ new apply-1, show what Scheme-1 would print given the
following inputs. If an expression produces an error message, you may
just write “error”; you don’t have to provide the exact text of the
message.

Scheme-1> car =>

Scheme-1> (* 3 7) =>

Scheme-1> (lambda (x) (+ x 1)) =>

Scheme-1> ((lambda (x) (+ x 1)) 3) =>

5. This question concerns the Tree abstract data type (with datum and
children) discussed in lecture.

We’re going to use Trees to store words. Each datum in the tree is a
letter, and each path from the root node to a leaf represents a word.
For example, the tree

represents the words cart, cap, cob, and cod. Note that this tree does
not contain the word car or the word art, because a word must extend

from the root to a leaf.

Write a procedure contains-word? That takes such a Tree and a word, and
returns #t if the tree contains the word, or #f if not.

6. Write a procedure list-split that takes in a list and a length, and
breaks up the original list into sublists of that length. For example,

STk> (list-split ‘(a b c d e f g h) 2)
((a b) (c d) (e f) (g h))

STk> (list-split ‘(a b c d e f) 4)
((a b c d) (d e))

STk> (list-split ‘() 5)
()

Note that the last element of the returned value (but only the last
one) may be shorter than the specified length.

Hint: This will be much, much, much easier if you do not try to write
it iteratively! Think about meaningful helper procedures, e.g. nth-cdr.

