
Question 1 (6 points):

What will Scheme print in response to the following expressions?

If an expression produces an error message, you may just write

"error"; you don't have to provide the exact text of the message.

Also, draw a box and pointer diagram for the value produced by

each expression.

(map caddr '((2 3 5) (7 11 13) (17 19)))

(list (cons 2 (cons 3 5)))

(append (list '(2) '(3)) (cons '(4) '(5)))

Question 2 (7 points)

Suppose you are in a team working on a social networking program.

You are given the constructor of a "person" data structure.

(define (make-person first-name last-name favorite-sport

favorite-movie)

 (list (list first-name last-name)

 favorite-sport

 (cons 'movie-favorite-movie)))

a) Write the selectors:

 (define (first-name person))

 (define (last-name person))

 (define (favorite-movie person))

 (define (favorite-sport person))

b) Your partner wrote a procedure find-partners that takes a

person p and a list of persons lst as arguments, and returns the

persons in the list that have the same favorite sport as p. Fix

all the data abstraction violations in his code.

 (define (find-partners p lst)

 (cond ((null? lst) '())

 ((equal? (cadr p) (cadr (first lst)))

 (cons (first lst) (find-partners p (butfirst

lst))))

 (else (find-partners p (butfirst lst)))))

Question 3 (5 points):

For reference, here are the central procedures of scheme-l, with

the lines numbered:

1 (define (eval-1 exp)

2 (cond ((constant? exp) exp)

3 ((symbol? exp) (eval exp))

4 ((quote-exp? exp) (cadr exp))

5 ((if-exp? exp)

6 (if (eval-1 (cadr exp))

7 (eval-1 (caddr exp))

8 (eval-1 (cadddr exp))))

9 ((lambda-exp? exp) exp)

10 ((pair? exp) (apply-1 (eval-1 (car exp))

11 (map eval-1 (cdr exp))))

12 (else (error ''bad expr: '' exp))))

13 (define (apply-) proc args)

14 (cond ((procedure? proc)

15 (apply proc arga))

16 ((lambda-exp? proc)

17 (eval-1 (substitute (caddr proc)

18 (cadr proc)

19 args

20 '())))

21 (else (error ''bad proc: '' proc))))

A student tries to type this into his computer, but makes one

mistake. Here is a transcript

of some of his test cases:

Scheme-1 : (+ 2 3)

5

Scheme-1: (+ (* 2 2) 3)

ERROR

Scheme-1 : ((lambda (x) (* x x)) 2)

4

Scheme-l: (lambda (x) (+ x x)) (+ 1 1))

ERROR

Scheme-1 : (if #t 2 3)

2

Scheme-) : (if (> 3 0) (+ 2 1) (+ 3 1))

3

Based on the test cases, what is wrong with his version of

scheme-1? Indicate the line

number with the problem, and what the student typed on that line.

Question 4 (8 points):

Write deep-depths. It takes a deep list as its argument, and

returns a list of the same

shape, but with every atomic element replaced with its depth in

sublists, as in these

examples:

> (deep-depths '(a b c))

(0 0 0)

> (deep-depths '(a (b c) d))

(0 (1 1) 0)

> (deep-depths '((((a)))))

((((3))))

6

Question 5 (5 points):

You and your friend Timmy want to be able to carry on

conversations that your parents

can't understand. Your aunt Evelyn teaches you Pig Latin, but

after some disastrous

failures to keep conversations secret you realize that your

parents know how to speak

Pig Latin, too. So you decide to invent Super Pig Latin, with

even more rules for more

categories of letters.

You realize that it's going to take some experimentation to

invent rules that are complicated

enough to confuse your parents, but simple enough for you and

Timmy to speak and

understand. So you decide to use data directed programming.

For every letter of the alphabet you create two table entries:

1. An operation called next that provides the argument to the

next call to superpigl, if

this letter is the first letter of the argument word.

2. A true/false value called done that indicates whether the

value returned by next is the

final translation into Super Pig Latin, so no more calls to

superpigl are needed.

For example, here's how you'd set up the rules for Pig Latin;

(put 'a 'next (lambda (wd) (word wd 'ay)))

(put 'a 'done #t) ; same for other vowels

(put 'b 'next (lambda (wd) (word (butfirst wd) (first wd))))

(put 'b 'done #f) ; same for other consonants

If your Super Pig Latin rules are "just like Pig Latin, but leave

out every D before the

first vowel, and if the first vowel is A, change it to E,'' then

you'd have the following two

exceptional entries:

(put 'd 'next (lambda (wd) (butfirst wd)))

(put 'a 'next (lambda (wd) (word 'e (butfirst wd) 'ay)))

Fill in the blanks in superpigl:

(define (superpigl wd)

(if ______________________________

 ______________________________))

Question 6 (8 points):

Write depth-of-datum. It takes in a tree and an datum, and

returns the depth of the

datum in the tree. You can assume that the datum is in the tree

at most once. If the

datum is not in the tree, return #f.

For example, if mytree is the tree

 A

 / \

 / \

 B C

 / \ / \

 D E F G

 / / \

 H I J

 / \ \

 K L M

then

> (depth-of-datum mytree 'a)

0

> (depth-of-datum mytree 'j)

3

> (depth-of-datum mytree 'z)

#f

