
CS61A (R. Fateman) Exam 2B Your Login : CS61a-_____ page 1 of 10

Computer Science 61A, Fall 2004 University of California, Berkeley

Exam 2A November 8, 2004 8-10PM

 DRAFT SOLUTIONS 11/10/04 9:15AM (points in {})

This is an open-book test. You have approximately two hours to complete it. You may
consult any books, notes, or other paper-based inanimate objects available to you. To
avoid confusion, read the problems carefully. If you find it hard to understand a problem,
read it again, and do your best to answer it. If you think you have found a typographical
error come to the front or the side of the room to ask about it. It would not be fair to give
you extra personalized help during the test in understanding a question, and so we won’t
do it.

 Partial credit may be given for partially correct answers.

Note that some questions on this exam offer the option to “punt”. This is a way for you
to receive partial credit for recognizing that you do not know the answer. For these
questions, you have two choices. You may supply an answer, which, as usual, will
receive anywhere between 0% and 100% of the points depending on how correct it
is. Alternatively, you may check “punt” in which case you will receive 20% of points
specified in exchange for us not having to grade the question.

 Your exam should contain 8 problems (numbered 0 through 7) on 10 pages. Please write
your answers in the spaces provided in the test. DO NOT START UNTIL WE TELL
YOU TO BEGIN.

0. [1 point] Your first name _______________ Your last (family) name______________
Your Teaching Assistant’s name __________
The day and time that your discussion section meets _______________
The seat number of your seat ______.
The row number (we will help you with this, later) _______

CLEARLY PRINT YOUR CS61A LOGIN ON EVERY PAGE!!!! 11/8; 9AM

Question MAX POINTS YOUR POINTS punt
0 1
1 15
2 15
3 5
4 12
5 5
6 14
7 8

TOTAL 75 /5

CS61A (R. Fateman) Exam 2B Your Login : CS61a-_____ page 2 of 10

1. Here are two programs, filter and limit, along with minor variations on them. You have already seen the
first version in lecture. We point out places where programs differ from earlier ones by lines marked with
;;*.
(define (filter pred? L)
 (define (loop L)
 (if (null? L) '()
 (let ((hd (car L))
 (rst (cdr L)))
 (if (pred? hd)
 (cons hd (loop rst))
 (loop rst)))))
 (loop L))

;; list of all elements in L less than max
(define (limit L max)
 (filter (lambda(x)(< x max)) L))
;;........................

(define (filter2 pred? L)
 (define (loop L)
 (if (null? L) '()
 (let ((hd (car L))
 (rst (cdr L)))
 (if (< hd max) ;;*
 (cons hd (loop rst))
 (loop rst)))))
 (loop L))

(define (limit2 L max)
 (filter2 (lambda(x)(< x max)) L))
;;........................

(define (filter3 max L)
 (define (loop L)
 (if (null? L) '()
 (let ((hd (car L))
 (rst (cdr L)))
 (if (< hd max)
 (cons hd (loop rst))
 (loop rst)))))
 (loop L))

(define (limit3 L max) (filter3 max L)) ;;*
;;........................

(define (filter4 L) ;;*
 (define (loop L)
 (if (null? L) '()
 (let ((hd (car L))
 (rst (cdr L)))
 (if (< hd max)
 (cons hd (loop rst))
 (loop rst)))))
 (loop L))

 (define (limit4 L max) (filter4 L)) ;;*
;;........................

CS61A (R. Fateman) Exam 2B Your Login : CS61a-_____ page 3 of 10

(define (filter5 pred? L) ;;*
 (define (loop L)
 (if (null? L) '()
 (if (pred? (car L)) ;;*
 (cons (car L)(loop (cdr L))) ;;*
 (loop (cdr L))))) ;) ;;* oops had one too many rpar
 (loop L))

(define (limit5 L max)
 (filter5 (lambda(x)(< x max)) L))

;;........................

(define (filter6 pred) ;;*
 (define (loop L)
 (if (null? L) '()
 (if (pred) ;;*
 (cons (car L) (loop (cdr L)))
 (loop (cdr L))))); oops had one too many rpar
 (loop L))

(define (limit6 L max)
 (filter6 (lambda ()(< (car L) max)))) ;;*

The questions consist of statements that may be T [true], or F [false] , or need some explanation. You
must answer the question, as indicated. You should check (F [false] describe) if you believe a program
does not return an answer but stops with an error. Then for full credit you must describe clearly the reason
for the error. If the error has to do with the environment explain why in complete English sentences. You
may draw a picture, but only to supplement, not replace, your explanation.

Some questions have another alternative (punt): Read the instructions on the cover page. A “punt” is
worth 20%.

1A. Does limit work as described in the comment? {1 point}
_X_Yes, (limit '(1 2 3 4 5) 4) returns (1 2 3).
___Yes, (limit '(1 2 3 4 5) 4) returns (1 2 3 4).
___Yes, (limit '(1 2 3 4 5) 4) returns (4 3 2 1).
___Yes, (limit '(1 2 3 4 5) 4) returns (4 5).
___ No, it does something else (describe) ________________________
___ I don’t know (punt)

1B. limit2 returns the same value as limit. {2}
___T
X__F Describe
___F Punt

The variable max is unbound in the environment in which filter2 is called.

1C. limit3 returns the same value as limit. {1}
_X_T
___F Describe
___F Punt

CS61A (R. Fateman) Exam 2B Your Login : CS61a-_____ page 4 of 10

1D. limit4 returns the same value as limit. {2}
___T
_X_F Describe
___F Punt

The variable max is unbound in filter4.

1E. limit5 returns the same value as limit. {2}
_X_T
___F Describe
___F Punt
 Unless you noticed one too many right parens, in which case filter5 can’t work because it is not
syntactically correct.

1F. limit6 returns the same value as limit. {2}
___T
_X_F Describe
___F Punt

variables L and max are both unknown inside filter6; also an extra rpar. If you said something about values
returned you didn’t get full credit.

1G. filter5 might take a much longer time using eval-1 than the other filters because it calls (car L) twice
and L might be very long. (T/F _F__) {1}
1H. loop in filter2 runs an iterative process. (T/F _F__) {1}

1I. f1 and f2 below seem to return the same values for any L, a list of integers. Why? {3}
(define (f1 L) (accumulate + 0 (filter odd? (map square L))))
(define (f2 L) (accumulate + 0 (map square (filter odd? L))))

SOLUTION. The squares of even numbers are even and the squares of odd numbers
are odd. Therefore the result is the same if you filter out the odd ones before
or after squaring: you get the same result.

CS61A (R. Fateman) Exam 2B Your Login : CS61a-_____ page 5 of 10

2. Sometimes it's difficult to remember the order of arguments to a procedure. Consider the following
contrived function:

 (define (f a b c)
 (list a (list b) c))

It is designed to be called like this:

 STk> (f 1 2 3) ;; a=1 b=2 c=3
 (1 (2) 3)

We'd like to create a function g that is just like f except that each argument to g is preceded by a symbol
which we shall call a keyword. This keyword makes explicit the parameter with which the actual argument
is to be associated, eliminating the need to remember the exact order of the parameters:

 STk> (g 'a 1 'b 2 'c 3)
 (1 (2) 3)
 STk> (g 'b 2 'a 1 'c 3)
 (1 (2) 3)
 STk> (g 'c 3 'b 2 'a 1)
 (1 (2) 3)
The goal is to write a function make-keyword-proc that takes two arguments. The first is a regular
Scheme procedure like f. The second is a list of the keywords in the order that the procedure expects.
make-keyword-proc should return a function like g that takes keyword arguments and calls f with the
arguments in the order f expects. Continuing the example above, to create the function g from f we can use
make-keyword-proc like this:

 STk> (define g (make-keyword-proc f '(a b c)))

The keywords do not have to match the names of the formal parameters of f:

 STk> (define g2 (make-keyword-proc f '(cs61a cool is)))
 STk> (g2 'cs61a 1 'is 2 'cool 3) ;;note, keyword order irrelevant in call
 (1 (2) 3)
Additionally, a call like
 STk> (g2 'is 2 'cs61a 1 'cool 3 'notcool 4)
must work because notcool is not a keyword and doesn't affect the call to f. Your program should work so
 STk> (g2 'cs61a 1)
will call f on arguments 1, #f, #f.

2A.First write a program, call it evenmember, with the following specification: ___Punt (20%) {3 points}
;; given an element x and a list L whose length is even,
;; return the sublist of L beginning with the first value eqv? to x,
;; checking only positions 0, 2, 4 .. Examples
;;(evenmember 'b '(a x b y c z)) is (b y c z)
;;(evenmember 'b '(a b b y c z)) is (b y c z)
;;(evenmember 'b '(a b c d) is ()

;;SOLUTION
 (define (evenmember x L)
 (if (pair? L)
 (if (eqv? (car L) x) L
 (evenmember x (cddr L)))
 '()))

CS61A (R. Fateman) Exam 2B Your Login : CS61a-_____ page 6 of 10

2B. Next, using evenmember, write make-keyword-proc. In order to keep your program short, assume
that the keyword argument list supplied is of even length, alternating keynames and values. ___Punt (20%)
{8}
SOLUTION
(define (make-keyword-proc proc keylist)
 (lambda args
 (apply proc (map
 (lambda(keywd)(and (not (null?(evenmember keywd args)))
 (cadr (evenmember keywd args))))
 keylist))))

2C. Finally, assume that we want to build keywords in to eval-1, and implement keyword argument
functions by a new special form similar to lambda, but called keyword-lambda, say as
(define f (keyword-lambda(a b c) ….)

How would you change eval-1 to accommodate this? You should use one or more complete English
sentences. {4}
Describe
___Punt (20%)

SOLUTION
When a keyword-lambda expression is encountered, it will be converted
to a specially marked procedure that, if it is applied (using apply)
will match up the formal parameters and the arguments according the
keyword specifications like the inside of make-keyword-proc

3. In midterm 1 we asked about a version of lisp in which there were no pairs, but just triples that had three
components. One common response was to point out that we can already make triples without rewriting
lisp. But now we know of a strange encoding as programs. We can define a tree-cons this way

(define (tree-cons label left right)
 (lambda(which)
 (cond ((= which 0) label)
 ((= which 1) left)
 ((= which 2) right)
 (else (error "illegal access to tree-cons)))))

3A. Show us you understand this representation by defining the accessor function for
right-tree. {2 pts} [no partial credit here]

(define (right-tree tc)(tc 2)) ; similar for other version of test.

3B. Also explain why the predicate tree-cons? would be difficult to write, using a complete English
sentence.
(or punt____): get 20% for saying “I have no idea”. {3}

SOLUTION: The predicate tree-cons? must be able to distinguish an
instance of a tree-cons, a function, from other functions; however,
Scheme officially provides no tools for comparing “closure procedure”
parts. Even if we could come up with a test that says “this is a
procedure of one argument allowing 0, 1, 2”: it might not be a tree-
cons. Oddly, you could try this: surround a call to the alleged tree-
cons function T with some “error catching” mechanism. See if (catch (T
3)) returns a string “illegal access to tree-cons” and from that
conclude it is a tree-cons, since who else would say that?

CS61A (R. Fateman) Exam 2B Your Login : CS61a-_____ page 7 of 10

4. (Option: you can punt all of question 4 _____ for 20%)

4A. Define a function every-nth that takes two arguments integer k and integer n > 0, and returns a stream:
the infinite stream of numbers beginning at the specified integer k and whose succeeding elements are k+n,
k+2n, k+3n, ... For example, if k=0 and n=3, the stream will begin with 0, 3, 6, 9, 12, 15, 18. {2 pts}

SOLUTION
(define (every-nth start n)(cons-stream start (every-nth (+ start n)
n)))

4B. Define a stream r1 of all non-negative integer multiples of 3. {1, 1} [Why did some people not use
every-nth for this??]

(define r1 (every-nth 0 3))

 Define another stream r2 of all non-negative integer multiples of 5.

(define r2 (every-nth 0 5))

4C. Define a function both-streams that given two streams s1 and s2 each of (increasing) numbers, returns
a new stream s3 of those numbers that appear in both s1 and s2. For example, (both-streams r1 r2) would
begin with 0, 15, 30, ... {5 pts}

SOLUTION
(define (both-streams s1 s2)
 (cond ((null-stream? s1) '())
 ((null-stream? s2) '())
 ((eqv? (stream-car s1)(stream-car s2))
 (cons-stream (stream-car s1)
 (both-streams (stream-cdr s1)(stream-cdr s2))))
 ((< (stream-car s1) (stream-car s2))
 (both-streams (stream-cdr s1)s2))
 (else (both-streams s1 (stream-cdr s2)))))))

4D. Are there any circumstances in which both-streams will not return? Explain, using examples as
appropriate. {3}
Yes, if the streams have no numbers in common, both-streams will not
return. An example would be even and odd number generated by(every-nth
0 2) and (every-nth 1 2).

CS61A (R. Fateman) Exam 2B Your Login : CS61a-_____ page 8 of 10

5. You are familiar with set! and set-car! One of them is a special form and the other is not. Explain why
this is the case in complete English sentences.

set! is a special form because (set! x y) must not evaluate its first
argument. Set-car! is an ordinary function because it must evaluate x,
which presumably evaluates to a pair, and it changes the car of that
pair.

6. Henry wants to design a Scheme bank account, protecting his account with a password or personal
identification number (PIN). He is not as good a programmer as you are and asks you to help him. He has
written a first draft of his new-account program below. Be sure to notice that it is different from the one
you have seen before. You should be able to help him to rewrite it all in one new version.
(or you can punt the whole question _____ for 20%)

6A. Enhance the program in a minimal fashion so that he can only take money out if he remembers the
correct PIN.
What is a command to extract $10?

(HA 'withdraw) 100 PIN) {1}

6B. Enhance the program below so that he can change the PIN.
 What is a command to change the PIN to 1234?

(HA 'changePIN) PIN 1234) {1}

6C. Perhaps because of a design error, anyone who has (a pointer to) Henry’s account can find out the
balance without knowing Henry’s PIN. (Hint: compare the deposit and withdraw programs). What
command would you use in the given program to find out Henry’s balance?

((HA 'deposit) 0) {1}

 6D. Change the program to protect Henry’s privacy, but add a feature so that Henry’s benefactors (perhaps
his parents) can deposit money, without knowing his PIN, or finding out his balance. Write such a program,
give-money so that (give-money HA 100) where HA is Henry’s account, will deposit 100 dollars in his
account.
see below

6E. Finally, change the program so that it causes an error to deposit or withdraw a negative amount of
money.
see below

CS61A (R. Fateman) Exam 2B Your Login : CS61a-_____ page 9 of 10

;;SOLUTION for problem 6 {11 more points. Many variations made this hard to
grade.…}

(define (new-account balance origPIN) ; PIN is personal identification
number
 (define (withdraw amount PIN) ;; TEST VERSION A ;;{3}
 (cond((equal? PIN origPIN)
 (set! balance (- balance (abs amount)))
 balance)
 (else (error "bad PIN"))))
 (define (withdraw amount PIN) ;; TEST VERSION B
 (cond((not(equal? PIN origPIN)) (error "bad PIN"))
 ((< amount 0)(error "bad amount"))
 (else
 (set! balance (- balance amount))
 balance)))
 (define (deposit amount) ;; VERSION A ;;{2}
 (set! balance (+ balance (abs amount))) balance) ; never negative

 (define (deposit amount) ;; VERSION B
 (cond
 ((< amount 0)(error "bad amount"))
 (else (set! balance (+ balance amount))
 balance))

 (define (pdep amount) ;;{2}
 (set! balance (+ balance (abs amount))) ;; or could check parents
;too.
 'Thanks) ;<<<<<

 (define (changePIN old new) ;;{1}
 (if (equal? old origPIN)(set! origPIN new)(error "bad PIN")))

 (define (respond-to-msg msg)
 (cond
 ((eq? msg 'withdraw) withdraw)
 ((eq? msg 'deposit) deposit)
 ((eq? msg 'changePIN) changePIN) ;;{1}
 ((eq? msg 'parentsdep) pdep) ;;{1}
 (else (error "Bad message: ~s to account" msg))))
 respond-to-msg)

(define (give-money ACCT AMT) ;;{1}
 ((ACCT 'parentsdep) AMT))

CS61A (R. Fateman) Exam 2B Your Login : CS61a-_____ page 10 of 10

 7. In eval-1, there is no "set!". Add it. (or punt___ for 20%)
You may wish to base your answer on the following program already included in eval-1.

Check here if you have tried to do this problem previously either during a discussion section, review
session, or with friends _____. {0, just curious}|
....
(define (lookup-variable-value var env0 env1)
 (let ((match (or (assq var env0) (assq var env1))))
 (if match (cdr match)
 (error "Undefined variable: " var))))

and by recalling this part of eval

((eq? kind 'symbol)
 (lookup-variable-value exp
 inner-env outer-env))

SOLUTION:
There are a bunch of ways of doing this, including putting set! in the special
forms list, and then doing (eq? kind 'set!) as a test in eval-1.

;;A kind of minimal change to eval-1, ignoring most abstractions etc would be
….
((eq? (car exp) 'set!)(set-cdr! ;{2}
 (lookup-variable-location (operand 1 exp) ;{2}
 env0 env1)
 (eval-1 (operand 2 exp) env0 env1)) ;;{2}
....

;;where
(define (lookup-variable-location var env0 env1) ;;{1,1}
 ;; return (name . val) or bomb.
 (or (assq var env0)
 (assq var env1)
 (error "Undefined variable: " var))) ; don’t add it to env.

;;; many other (more elaborate) versions possible. failure to use
mutation is a bad sign. (max 4 points). Many people used the punt
option, making this easier to grade than expected.

