
CS61A (R. Fateman) Exam 1A Your Login name CS61a-_____ page 1 of 5

Computer Science 61A, Fall 2004 University of California, Berkeley

Exam 1A October 4, 2004 8-10PM SKETCH OF SOLUTIONS

1. [19 points total] Consider these functions

(define (ga k)(if (= k 0) '()(cons k (ga (- k 1)))))

(define (gb k)
 (define (g1 p k)
 (if (= k 0) '()(cons p (g1 p (- k 1)))))
 (g1 k k))

(define (gc k)
 (define (g2 p k)
 (if (= k 0) '()(cons (- p 1) (g2 p (- k 1)))))
 (g2 k k))

(define (gd k)
 (define (g3 p k)
 (if (= k 0) p (g3 (cons k p) (- k 1))))
 (g3 k k))

(define (ge k)
 (define (g4 p k)
 (if (= k 0) '()(cons (ga p)(g4 p (- k 1)))))
 (g4 k k))

a. Choose from the following table the best response, A –H : What is returned from
executing each of these expressions? (choices may be used more than once.) [10 points]

(ga 5) (5 4 3 2 1) = E
(gb 5) (5 5 5 5 5) = C
(gc 5) (4 4 4 4 4) = G
(gd 5) (1 2 3 4 5 . 5) = H
(ge 5) ((5 4 3 2 1)(5 4 3 2

1)…) = H

b. b. Draw a circle around the name of each function that is recursive:
(ga, g1, g2, g3, g4). [2 points]

These are all recursive programs.

c. Draw a circle around the name of each function that, when run, generates an iterative
process:

A (0 1 2 3 4 5)
B (1 2 3 4 5)
C (5 5 5 5 5)
D (5 4 3 2 1 0)
E (5 4 3 2 1)
F ((-5 1) (-5 2)(-5 3)(-5 4) (-5 5))
G (4 4 4 4 4)
H None of the above

CS61A (R. Fateman) Exam 1A Your Login name CS61a-_____ page 2 of 5

(ga, gb, gc, gd, ge). [2 points] Just gd.

d. What is the running time of each of the functions? Choose from this table (answers
may be used more than once.) [5 pts]

ga J
gb J
gc J
gd J
ge L

Note that if you were looking for log(n), you missed part of the concept of choosing a
parameter that characterizes the size or complexity of the input, and that is allowed
to grow.

Question 2. [10 points] Word switch
Your task is to finish writing a short program to translate from “netlingo” to English. For
example, you know the abbreviations LOL = laughing out loud; AFAIK = as far as I
know; OTOH = on the other hand.

(define dictionary
 '((LOL laughing out loud)
 (AFAIK as far as I know)
 (OTOH on the other hand)))

(define sample1 '(The textbook is correct AFAIK))
(define sample2 '(OTOH I never even opened it LOL))

(define (translate sent dict)
 define (translate sent dict)
 (cond ((null? sent) '())
 ((assoc (car sent) dict) ;; complete the program below
 (append (cdr (assoc (car sent) dict)) ;;* see below
 (translate (cdr sent) dict))))

 (else (cons (car sent)(translate(cdr sent) dict)))))

;; like 1 point per underline + 3 points if assembled correctly

Example: (translate sample2 dictionary) produces
 (on the other hand i never even opened it laughing out loud)

I Θ (p)
J Θ (k)
K Θ (p2)
L Θ (k2)
M Θ (log(k))
N Θ (log(p))
P None of the above

CS61A (R. Fateman) Exam 1A Your Login name CS61a-_____ page 3 of 5

3. [3 points] Consider (define (f a b c)(if (b a 0)(c a) a))

Explain in a single English sentence what (f x < -) computes, if x has a numeric value.

If the bindings for < and – are unchanged from the defaults, then (f x < -) computes
the same as (if (< x 0)(- x) x) or absolute value of x. If x is unbound or not a number,
it will produce an error.

4. [3 points] threelisp
Ordered trees seem to benefit from a representation in which three items are used: (label
left right) as a typical representation in lisp. A programming language designer proposes
a version of lisp in which there are no pairs, but triples. That is, instead of (cons a b) there
is (treecons a b c), and instead of car, cdr, there are accessor functions for the part of a
tree t, (label t)(left t)(right t). Write one or more complete English sentences supporting
one of these positions. (Circle which position you are supporting.)

a. This is a great idea.
b. This is a terrible idea.
c. This is not even an idea.

(a): Trees would be more compactly represented, and some accommodation can be
made to store lists (say, s-expressions constituting lisp programs!) by ignoring the
third item in a triple, say (cons a b) = (treecons a b nil).
So you could do it. Historical note, a system called TREET was designed by E.C.
Haines, using this idea. 1965.
(b): You can already represent triples by lists of three items, so no real advantage is
obtained this way, at least abstractly. By not having pairs, representing lists of one
or two items, or four or more items becomes somewhat irregular. You can’t use
triples to represent symbolic expressions representing lisp programs which are
essentially lists, usually longer than 3.
(c): Same as (b).
Some people muddled the ideas of abstraction and representation here. The
proposal here was a different REPRESENTATION. A good argument to not
support this representation is that the abstraction of trees does not really need it,
and in particular, other kinds of trees with more than 2 sub-trees, are kind of
inconvenient! Some people added irrelevant or outright wrong statements to an
initially correct answer, and ended up with fewer points.

 5. [8 points] (evaluate)
Here is a self-contained but not very complete evaluator program.

(define (evaluate exp binding)
 (cond ((number? exp) exp)

CS61A (R. Fateman) Exam 1A Your Login name CS61a-_____ page 4 of 5

 ((symbol? exp) (cadr (assoc exp binding))) ;get val from
binding
 ((eqv? (car exp) '+) (+ (evaluate (cadr exp) binding)
 (evaluate (caddr exp)binding)))
 ((eqv? (car exp) '*) (* (evaluate (cadr exp) binding)
 (evaluate (caddr exp)binding)))
 (else exp)))

What results from executing each of the following pieces of code?
(evaluate 4) error
(evaluate 4 '()) 4
(evaluate 'a '((a 3))) 3
(evaluate '(+ a (* b c))
 '((a 1)(b 2)(c 3)))

7

(evaluate '(+ a (* b c))
 '((a 1)(b 2)))

error

(evaluate '(foo 3 (+ a b))
 '((foo *)(a 1)(b 2)))

(foo 3 (+ a b))

6. [10 points]
For this question you will not write a program. Just draw some pictures in the space
below.

a. The following elements are inserted into a binary search tree, in order. That is, element
5 is inserted first. Draw a sequence of 8 trees, each showing the resulting tree after the
insertion of a new element.

5 7 9 6 10 2 3 1 (Version B of the test had a different sequence)
We don’t draw the whole sequence, just the end product.

b. How deep is the tree? (A tree with one node is defined as depth 0).

3
c. What is the depth of the most balanced binary search tree it is possible to construct
using these same elements? 3

 5
 2 7
 1 3 6 9
 10

7. [6 points total]

CS61A (R. Fateman) Exam 1A Your Login name CS61a-_____ page 5 of 5

In week 4 homework you were introduced to a representation for a hierarchical file
system. We are going to use the same representation except instead of using (file g) for
the file named g, we will use a list of length 3: (file g 100) which means that the file
named g is of length 100.

The list t1 below, is an example file directory.

(define t1 '(directory a
 (file b 100)
 (file c 200)
 (directory c
 (file d 10)
 (file e 10))
 (file f 300)))

a. What value does this program return, when called on this example, (YYYY t1)?
 [2 points]
(300 10 10 200 100)
Version B of the test added the numbers instead of consing them

b. Describe in terms of the directory structure, what r is when the line with comment
;;* is executed, and what the value of the second argument to count2 is. [4 points]

r is a list or sub-list of files or subdirectories of a directory.
The value of the second argument is the accumulated list of file sizes (or the sum of file
sizes) up to this time, not yet examining the sublist (cdr r) of the list of files or
directories.

(define (YYYY r) ; r is a directory
 ;; we define count-top, which itself has 2 subroutines
 (define (count-top fun)

 (define (count1 r sofar)
 ;; called only on (directory ...) or (file)
 (if (eqv? (car r) 'directory) (count2 (cddr r) sofar)
 ;; otherwise (car r) is 'file
 (cons (fun r) sofar))) ;; fun is passed in to count-top

 (define(count2 r sofar)
 ;; called only on ((file ...)..) or ((directory) ...) or ()
 (if (null? r) sofar
 (count2 (cdr r) (count1 (car r) sofar)))) ;;*
 ;; this next line, inside count-top, starts the processing
 ;; of a directory
 (count1 r '()))
 ;; this next expression is inside YYYY
 (count-top caddr))

CS61A (R. Fateman) Exam 1A Your Login name CS61a-_____ page 1 of 5

Computer Science 61A, Fall 2004 University of California, Berkeley

Exam 1A October 4, 2004 8-10PM SKETCH OF SOLUTIONS

1. [19 points total] Consider these functions

(define (ga k)(if (= k 0) '()(cons k (ga (- k 1)))))

(define (gb k)
 (define (g1 p k)
 (if (= k 0) '()(cons p (g1 p (- k 1)))))
 (g1 k k))

(define (gc k)
 (define (g2 p k)
 (if (= k 0) '()(cons (- p 1) (g2 p (- k 1)))))
 (g2 k k))

(define (gd k)
 (define (g3 p k)
 (if (= k 0) p (g3 (cons k p) (- k 1))))
 (g3 k k))

(define (ge k)
 (define (g4 p k)
 (if (= k 0) '()(cons (ga p)(g4 p (- k 1)))))
 (g4 k k))

a. Choose from the following table the best response, A –H : What is returned from
executing each of these expressions? (choices may be used more than once.) [10 points]

(ga 5) (5 4 3 2 1) = E
(gb 5) (5 5 5 5 5) = C
(gc 5) (4 4 4 4 4) = G
(gd 5) (1 2 3 4 5 . 5) = H
(ge 5) ((5 4 3 2 1)(5 4 3 2

1)…) = H

b. b. Draw a circle around the name of each function that is recursive:
(ga, g1, g2, g3, g4). [2 points]

These are all recursive programs.

c. Draw a circle around the name of each function that, when run, generates an iterative
process:

A (0 1 2 3 4 5)
B (1 2 3 4 5)
C (5 5 5 5 5)
D (5 4 3 2 1 0)
E (5 4 3 2 1)
F ((-5 1) (-5 2)(-5 3)(-5 4) (-5 5))
G (4 4 4 4 4)
H None of the above

CS61A (R. Fateman) Exam 1A Your Login name CS61a-_____ page 2 of 5

(ga, gb, gc, gd, ge). [2 points] Just gd.

d. What is the running time of each of the functions? Choose from this table (answers
may be used more than once.) [5 pts]

ga J
gb J
gc J
gd J
ge L

Note that if you were looking for log(n), you missed part of the concept of choosing a
parameter that characterizes the size or complexity of the input, and that is allowed
to grow.

Question 2. [10 points] Word switch
Your task is to finish writing a short program to translate from “netlingo” to English. For
example, you know the abbreviations LOL = laughing out loud; AFAIK = as far as I
know; OTOH = on the other hand.

(define dictionary
 '((LOL laughing out loud)
 (AFAIK as far as I know)
 (OTOH on the other hand)))

(define sample1 '(The textbook is correct AFAIK))
(define sample2 '(OTOH I never even opened it LOL))

(define (translate sent dict)
 define (translate sent dict)
 (cond ((null? sent) '())
 ((assoc (car sent) dict) ;; complete the program below
 (append (cdr (assoc (car sent) dict)) ;;* see below
 (translate (cdr sent) dict))))

 (else (cons (car sent)(translate(cdr sent) dict)))))

;; like 1 point per underline + 3 points if assembled correctly

Example: (translate sample2 dictionary) produces
 (on the other hand i never even opened it laughing out loud)

I Θ (p)
J Θ (k)
K Θ (p2)
L Θ (k2)
M Θ (log(k))
N Θ (log(p))
P None of the above

CS61A (R. Fateman) Exam 1A Your Login name CS61a-_____ page 3 of 5

3. [3 points] Consider (define (f a b c)(if (b a 0)(c a) a))

Explain in a single English sentence what (f x < -) computes, if x has a numeric value.

If the bindings for < and – are unchanged from the defaults, then (f x < -) computes
the same as (if (< x 0)(- x) x) or absolute value of x. If x is unbound or not a number,
it will produce an error.

4. [3 points] threelisp
Ordered trees seem to benefit from a representation in which three items are used: (label
left right) as a typical representation in lisp. A programming language designer proposes
a version of lisp in which there are no pairs, but triples. That is, instead of (cons a b) there
is (treecons a b c), and instead of car, cdr, there are accessor functions for the part of a
tree t, (label t)(left t)(right t). Write one or more complete English sentences supporting
one of these positions. (Circle which position you are supporting.)

a. This is a great idea.
b. This is a terrible idea.
c. This is not even an idea.

(a): Trees would be more compactly represented, and some accommodation can be
made to store lists (say, s-expressions constituting lisp programs!) by ignoring the
third item in a triple, say (cons a b) = (treecons a b nil).
So you could do it. Historical note, a system called TREET was designed by E.C.
Haines, using this idea. 1965.
(b): You can already represent triples by lists of three items, so no real advantage is
obtained this way, at least abstractly. By not having pairs, representing lists of one
or two items, or four or more items becomes somewhat irregular. You can’t use
triples to represent symbolic expressions representing lisp programs which are
essentially lists, usually longer than 3.
(c): Same as (b).
Some people muddled the ideas of abstraction and representation here. The
proposal here was a different REPRESENTATION. A good argument to not
support this representation is that the abstraction of trees does not really need it,
and in particular, other kinds of trees with more than 2 sub-trees, are kind of
inconvenient! Some people added irrelevant or outright wrong statements to an
initially correct answer, and ended up with fewer points.

 5. [8 points] (evaluate)
Here is a self-contained but not very complete evaluator program.

(define (evaluate exp binding)
 (cond ((number? exp) exp)

CS61A (R. Fateman) Exam 1A Your Login name CS61a-_____ page 4 of 5

 ((symbol? exp) (cadr (assoc exp binding))) ;get val from
binding
 ((eqv? (car exp) '+) (+ (evaluate (cadr exp) binding)
 (evaluate (caddr exp)binding)))
 ((eqv? (car exp) '*) (* (evaluate (cadr exp) binding)
 (evaluate (caddr exp)binding)))
 (else exp)))

What results from executing each of the following pieces of code?
(evaluate 4) error
(evaluate 4 '()) 4
(evaluate 'a '((a 3))) 3
(evaluate '(+ a (* b c))
 '((a 1)(b 2)(c 3)))

7

(evaluate '(+ a (* b c))
 '((a 1)(b 2)))

error

(evaluate '(foo 3 (+ a b))
 '((foo *)(a 1)(b 2)))

(foo 3 (+ a b))

6. [10 points]
For this question you will not write a program. Just draw some pictures in the space
below.

a. The following elements are inserted into a binary search tree, in order. That is, element
5 is inserted first. Draw a sequence of 8 trees, each showing the resulting tree after the
insertion of a new element.

5 7 9 6 10 2 3 1 (Version B of the test had a different sequence)
We don’t draw the whole sequence, just the end product.

b. How deep is the tree? (A tree with one node is defined as depth 0).

3
c. What is the depth of the most balanced binary search tree it is possible to construct
using these same elements? 3

 5
 2 7
 1 3 6 9
 10

7. [6 points total]

CS61A (R. Fateman) Exam 1A Your Login name CS61a-_____ page 5 of 5

In week 4 homework you were introduced to a representation for a hierarchical file
system. We are going to use the same representation except instead of using (file g) for
the file named g, we will use a list of length 3: (file g 100) which means that the file
named g is of length 100.

The list t1 below, is an example file directory.

(define t1 '(directory a
 (file b 100)
 (file c 200)
 (directory c
 (file d 10)
 (file e 10))
 (file f 300)))

a. What value does this program return, when called on this example, (YYYY t1)?
 [2 points]
(300 10 10 200 100)
Version B of the test added the numbers instead of consing them

b. Describe in terms of the directory structure, what r is when the line with comment
;;* is executed, and what the value of the second argument to count2 is. [4 points]

r is a list or sub-list of files or subdirectories of a directory.
The value of the second argument is the accumulated list of file sizes (or the sum of file
sizes) up to this time, not yet examining the sublist (cdr r) of the list of files or
directories.

(define (YYYY r) ; r is a directory
 ;; we define count-top, which itself has 2 subroutines
 (define (count-top fun)

 (define (count1 r sofar)
 ;; called only on (directory ...) or (file)
 (if (eqv? (car r) 'directory) (count2 (cddr r) sofar)
 ;; otherwise (car r) is 'file
 (cons (fun r) sofar))) ;; fun is passed in to count-top

 (define(count2 r sofar)
 ;; called only on ((file ...)..) or ((directory) ...) or ()
 (if (null? r) sofar
 (count2 (cdr r) (count1 (car r) sofar)))) ;;*
 ;; this next line, inside count-top, starts the processing
 ;; of a directory
 (count1 r '()))
 ;; this next expression is inside YYYY
 (count-top caddr))

