
CS61A Fall 2003 Midterm 2, Clancy/Hilfinger

Problem 1 (4 points, 5 minutes)

Part a

Fill in the blanks below to complete the next-higher procedure. Given a grade A, B, C, D, or F, next-higher
returns the next higher grade; the next higher grade for A is A.

(define (next-higher grade)
 (cadr
 (assoc
 grade

 __)))

Part b

A grading policy is a procedure that takes as argument a list of scores and returns a letter grade. Define a
procedure named generous that, given a grading policy as an argument, returns a grading policy that awards a
grade one higher than the argument policy would give. Use the next-higher procedure from part a.

Problem 2 (4 points, 7 minutes)

Consider the following procedure.

(define (exam a)
 (let ((b 9))
 (lambda (c)
 (let ((d 11))
 (set! a (+ a 1))
 (set! b (+ b 2))
 (set! c (+ c 3))
 (set! d (+ d 4))
 (list a b c d)))))

Fill in the blank with the output that stk would produce.

STk> (define f (exam 7))
f

CS61A Fall 2003 Midterm 2 (Clancy/Hilfinger)

1

STk> (f 5)
(8 11 8 15)
STk> (f 1)

Problem 3 (6 points, 7 minutes)

Suppose the second and third arguments to the call to lookup-variable-value in eval-1 are accidentally
exchanged as follows, with no other changes to the program:

((eq? kind 'symbol)
 (lookup-variable-value exp outer-env inner-env))

Give a sequence of expressions whose effect in the Scheme-1 interpreter would differ in the modified version
from its effect in the original version. Also indicated how the Scheme-1 interpreter would handle the
expressions you provide, and explain how and why their behavior in the modified code would differ.

Problem 4 (7 points, 10 minutes)

Consider a procedure named find that's given two arguments,
an x (which may be of any type), and•
a table whose elements have the form (list pred_k val_k), where pred_k is a one-argument predicate and val_k
is any value.

Find searches the table for the first pred_k for which (pred_k x) is true, and then returns val_k. If (pred_k x) is
false for all pred_k in the table, find returns #f. Three examples appear below.

STk> (define tb1 (list (list integer? 'a) (list symbol? 'b)))
tbl
STk> (find 17 tbl)
a
STk> (find 'mike tbl)
b
STk> (find '(a b) tbl)
#f

Implement find using a single call to accumulate or reduce. Use a lambda expression rather than a named
procedure for the argument to accumulated or reduce, and use descriptive names for its parameters.

•

CS61A Fall 2003 Midterm 2 (Clancy/Hilfinger)

2

(define (find x table)
 (____________________ ; accumulate or reduce goes here
 ; arguments go here

Problem 5 (7 points, 12 minutes)

An integer range represents a sequence of consecutive integers. It is represented by a two-element list whose
first element is the first integer in the sequence and whose second element (a non-negative integer) is the
number of integers that follow in the sequence. Some examples:

integer
range

sequence
represented

(9 4) 9, 10, 11, 12

(-3 5) -3, -2, -1, 0, 1

(1 1) 1

(4 0) empty sequence

Define a procedure named expanded that, given a possibly infinite stream of integer ranges as argument,
returns the stream of integers that results from expanding all the integer ranges into the sequences they
represent. This stream may contain duplicate values; for example, if int-range-stream is defined to be the
stream containing the ranges (1 1), (-3 5), (4 0), and (9 4)), then (expanded int-range-stream) should return the
stream containing the integers 1, -3, -2, -1, 0, 1, 9, 10, 11, 12. You may use auxiliary procedures.

CS61A Fall 2003 Midterm 2 (Clancy/Hilfinger)

3

Problem 6 (10 points, 18 minutes)

One often sees novice Scheme programmers code a test as (if expr #t #f) where merely saying expr would
suffice. The fixed procedure below is intended to replace all occurences of (if expr #t #f) by expr; fill in the
blanks to complete the procedure. Assume that the argument expression is anything recognized by the
Scheme-0 interpreter.

Your solution shouldn't do any evaluating. For example, you shouldn't simplify the expression (if (> a 0)
(quote #t) #f). Your solution must, however, handle nested expressions. For instance, it should return #t when
given the argument

'(if (if #t #t #f) (if #t #t #f) (if #f #t #f))

(define (fixed expr)
 (cond
 ; base cases

 ((eq? (car expr) 'if)

CS61A Fall 2003 Midterm 2 (Clancy/Hilfinger)

4

 (else

Problem 7 (1 point extra credit)

According to the Belgians, playing what musical instrument requires "a strong back, a weak mind, and
freedom from gout"?

CS61A Fall 2003 Midterm 2 (Clancy/Hilfinger)

5

	CS61A Fall 2003 Midterm 2 (Clancy/Hilfinger)

