
F’02 CS 61A Midterm 1 of 6 pages

NAME:_____________________ SCORE:________________
LOGIN: ____________________

CS61A Midterm #1 L. Rowe
Fall 2002

This examination is closed books, notes, and friends. Answer all questions in the space
provided. If you do not understand a question, please ask the proctor for clarification.

Answer the questions using the Scheme functions discussed in class. You can use the
word/sentence abstraction but not mutators (e.g., set! , etc.), vectors, or continuations. If
you do not remember the specific arguments to a function or the order of the arguments
to a function that takes several arguments, add a comment that describes how you are
using the function. We are interested in the comments, not details about function
interfaces.

 Question Score Total Possible

1 (20 possible)

2 (10 possible)

3 (20 possible)

4 (10 possible)

5 (10 possible)

__

TOTAL (70 possible)

Oath

I certify that I am the student whose name appears above.

 Signature: ___________________________________

 Student ID #: ________________________________

Seating

On my left: Name:_____________________ Login:_______________________

On my right: Name:_____________________ Login:_______________________

F’02 CS 61A Midterm 2 of 6 pages

1. (20 points) Show what Scheme will display or do if you enter each expression to the
 top-level interpreter (i.e., at the STk> prompt).

 (i) (list ‘list)

 (ii) (car (car (list ‘a)))

 (iii) (first ‘(word 1 2 3))

 (iv) ((lambda () (/ 3 1))

 (v) (define (f) (g))
 (define (g) f)
 (f)

 (vi) ((define (square x) (* x x)) 2)

 (vii) ((lambda (x y) x) ‘(1 2))

 (ix) (cons (cons 1 ‘()) (cons 2 ‘()))

(x) (let ((+ 0) (x +) (y 1))
 (x + y))

F’02 CS 61A Midterm 3 of 6 pages

2. (10 points) This question builds on the Twenty-one game from project 1. Instead of
 representing a card by a word consisting of a number or letter and a letter for the suit,
 we are going to use a pair. The pair will include a number or letter for the rank of the
 card (i.e., 2, 3, …, 10, j, q, k, or a) and a letter for the suit (i.e., c, d, h, or s).

 For example the 4 of hearts and the king of diamonds will be represented as follows:

 (cons 4 ‘h)

 (cons ‘k ‘d)

 (i) (2 points) Write a function make-card that takes a rank and suit and returns a
 pair representing the card.

 (ii) (4 points) Write two accessor functions rank and suit . rank takes a card and
 returns the number or letter of the card. suit takes a card and returns the suit.
 For example:

 (define four_of_hearts (make-card 4 ‘h))
 (define king_of_diamonds (make-card ‘k ‘d))

 (rank four_of_hearts) => 4
 (rank king_of_diamonds) => k

 (suit four_of_hearts) => h
 (suit king_of_diamonds) => d

 (iii) (4 points) Write the function total using the new representation of a card.
 total takes a “list of cards” and adds up their value assuming aces count as 11
 and there are no jokers.

F’02 CS 61A Midterm 4 of 6 pages

3. (20 points) A word is a doublet of another word if they differ in only one letter. For
example, “noise” and “poise” are doublets, “poise” and “posse” are doublets, but
“noise” and “posse” are not doublets because they differ in two letter. You are to
write the procedure doublet? that takes two words and returns #t or #f indicating
whether or not the two arguments are doublets. Doublet words must be the same
length. (Hint: you may need a helper function although the problem can be solved
without one.)

F’02 CS 61A Midterm 5 of 6 pages

4. (10 points) Draw arrows in the following code to demonstrate which variables refer to
 which definitions. For example:

 shows that x in the body of the procedure is bound to the formal argument. Note that
 there is no binding for the formal argument, so no arrow is drawn from it.

 (i) (5 points) Draw arrows to show the binding of each variable in the following
 examples:

 (define (bar x)
 ((lambda (x) (* x x)) x))

 (let ((x 3) (y 2))
 (define (func x) (+ x y))
 (let ((x 100) (y 200))
 (func x)))

 (ii) (5 points) What does the let expression return?

5. (10 points) You are to write a procedure named agrees? that takes two arguments:

 1) a function f that takes one argument
 2) a list of pairs

 The “list of pairs” will be possible values of computing f . In other words, the first
 value of the pair will be an actual argument and the second value will be a possible
 return result of the procedure. The agrees? procedure will determine whether f
 applied to the first value in each pair produces a result that matches the second value
 in the pair. You can think of this procedure as one the readers might construct to test a
 homework assignment. The agrees? procedure should return #t or #f depending
 on whether all pairs match. (Example on next page.)

(define (foo x)

 (+ x 2)) x

F’02 CS 61A Midterm 6 of 6 pages

For example,

 (agrees? (lambda (x) (* x x))
 (list (cons 1 1) (cons 3 9))) => #t
 (agrees? (lambda (x) (* x x))
 (list (cons 2 4) (cons 1 5) (cons 6 36))) => #f
 (agrees? (lambda (x) (* x x)) ‘()) => #t

Write the function agrees? :

