CS 61A Midterm #2 — October 17, 2001 Complis.;

ETA War

d

Your name

login: csbla—
Discussion section number

TA’s name

This exam is worth 40 points, or about 13% of your total course grade. The exam contains
5 substantive questions, plus the following:

Question 0 (1 point): Fill out this front page correctly and put your name and login
correctly at the top of each of the following pages.

This booklet contains seven numbered pages including the cover page. Put all answers on
these pages, please; don’t hand in stray pieces of paper. This is an open book exam.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

Our expectation is that many of you will not complete one or two of these questions. If

you find one question especially difficult, leave it for later; start with the ones you find
easier.

READ AND SIGN THIS: 0 2
I certify that my answers to this exam are all my own 1 /8
work, and that I have not discussed the exam questions or 5
answers with anyone prior to taking this exam. /8
If I am taking this exam early, I certify that I shall not 3 /8
discuss the exam questions or answers with anyone until 4
after the scheduled exam time. /7
5 /8
total /40




Question 1 (8 points):

What will Scheme print in response to the following expressions? If an expression produces
an error message, you may just write “error”; you don’t have to provide the exact text of

the message. Also, draw a box and pointer diagram for the value produced by
each expression.

(cons (list 1 2) 4)

(cons (caddr ’(a b ¢ d e)) (list 3 4))

(append (cons 3 ’()) (list 4 5))

(1ist (coms 1 2) (1list 3 4))



Your name login cs61la—

Question 2 (8 points):

This question relates to trees structured like the world tree discussed in lecture, defined
using the constructor make-tree and selectors datum and children.

The address—in-tree? procedure takes as arguments a tree and an address. An address
is a list of the contents of nodes. The procedure should return true if the datum at the
root of the tree is the same as the first element of the address, and there exists a child

whose datum is the second element of the address, and so on. If the address is not in the
tree, your procedure should return #f£.

For example, given the tree ca-tree shown below, with words as the data:

> (address-in-tree? ca-tree ’(california berkeley))
#t

> (address-in-tree? ca-tree ’(california sf market 1928))
#t

> (address-in-tree? ca-tree ’(california berkeley shattuck))
#f

Write address-in-tree?, using mutual recursion with a helper procedure named
address-in-forest? and not using higher-order procedures.



Question 3 (8 points):

Given a database of prices for various things, we'd like to be able to take a shopping list (3

apples, 2 quarts of milk, etc.) and figure out the total price. We’ll maintain this database
using the get/put table.

For most things, there is a single price regardless of how many you buy. For example, if
an apple costs 50 cents, we’ll say

(put ’price ’apple 50)

But some things cost less in quantity. For example, suppose that cans of soda cost 65 cents
each, but if you get six-packs, each can costs only 60 cents. To represent that, instead of

putting a number in the table, we'll put in a function that takes the quantity purchased
as its argument and returns the total price:

(put ’price ’soda (lambda (quantity)

(+ (* (quotient quantity 6) 360) ; 6 cans * 60 cents
(* (remainder quantity 6) 65))))

We’ll represent an item such as “5 apples” using tagged data: (attach-tag ’apple 5).
Respect the data abstraction. A shopping list is a list of items.

Write the procedure price that takes a shopping list as its argument and returns the total
price for all items:

> (price (list (attach-tag ’apple 5) (attach-tag ’soda 8)))
740 ; 5%50=250 for apples, (6*60)+(2*65)=360+130=490 for soda



Your name login cs6la—, _

Question 4 (7 points):

Ben Bitdiddle wants to combine data-directed programming with message-passing. He
likes the message-passing notation, in which a datum is represented using a procedure

that accepts messages, but he wants to be able to use put to add new messages to a type.
For example, he wants to say

(put ’square ’perimeter (lambda (s) (x 4 s)))
(put ’square ’area (lambda (s) (* s s)))

(define s3 (make-shape ’square 3))
and then have s3 behave just like the message-passing square as discussed in lecture:

> (83 ’area)

9

> (s3 ’perimeter)
12

The central new procedure here is make-shape, a procedure that takes a type name and a
linear size as its arguments and returns a datum of that shape and size. (In the example,
make-shape was called to create a square of size 3.) The procedure representing a datum

(such as s3 in the example) should look in the table to find the method stored using put
for whatever message is given to it.

Write make-shape.



Question 5 (8 points):
This question concerns object-oriented programming.
You have been hired by the registrar to handle course enrollment.

(a) Create a course class with instantiation variables department, number, and size (how
many students can enroll).

A course object should accept the message enroll with the name of a student as its
argument. If there is room in the course, that student should be enrolled. The enroll
method will return #t if the student was enrolled, or #£ if there was no room. (To simplify
the problem, we won’t implement waiting lists.)

The message students, with no arguments, should return a list of the students enrolled

in the course. The message space-left, with no arguments, should return the number of
spaces remaining for more students.

> (define cs6la (instantiate course ’cs ’61a 2))
> (ask cs6la ’enroll ’Ryan)
#t

> (ask cs6la ’space-left)
1

> (ask cs6la ’enroll ’Yaping)
#t

> (ask c¢s6la ’enroll ’Chris)
#f

> (ask cs6ia ’students)
(Yaping Ryan)

This question continues on the next page.
g

6



Your name login cs6la—

(Question 5 continued.)

(b) Create a catalog class with one instantiation variable, courses, which will be a list
of course objects. Give it a method available that takes a department as argument and
returns a list of the numbers of courses in that department with room for more students:

> (define cs61b (instantiate course ’cs ’61b 10))

> (define cs6ic (instantiate course ’cs ’61c 5))

> (define ps2 (instantiate course ’ps 2 100))

> (define ucb-catalog (instantiate catalog (list cs6la cs61lb cs6lc ps2)))
> (ask ucb-catalog ’available ’cs)

(61b 61c)

In this example, cs61a is not available because it’s full, and ps2 is not listed because it’s
in the wrong department.



