
CS 3L (Clancy) Solutions and grading standards for exam 2
Fall 2009 *** DRAFT

 A

172 students took the exam. Scores ranged from 2 to 40. The mean was 29.4; the median
was 31. 93 students scored between 30.5 and 40, 54 between 20.5 and 30, 22 between
10.5 and 20, and 3 less than 10.5. Were you to receive grades of 75% on each in-class
exam (i.e. 30 on this exam) and on the final exam, plus good grades on homework and
lab, you would receive an A–; similarly, a test grade of 20 may be projected to a B–.
There were two versions of the test. (The version indicator appears at the bottom of the
first page.)
If you think we made a mistake in grading your exam, describe the mistake in writing and
hand the description with the exam to your lab t.a. or to Mike Clancy. We will regrade
your entire exam.

Problem 0 (2 points)
Each of the following cost you 1 point on this problem: you earned some credit on a
problem and did not put your login name on the page, you did not adequately identify
your lab section, or you failed to put the names of your neighbors on the exam. The rea-
son for this apparent harshness is that exams can get misplaced or come unstapled, and
we want to make sure that every page is identifiable. We also need to know where you
will expect to get your exam returned. Finally, we occasionally need to verify where stu-
dents were sitting in the classroom while the exam was being administered.

Problem 1 (4 points)
This problem requested that you add parentheses and quotes to a call to cons and a call
to append to produce the list ((A B) C) on version A or the list ((F G) H) on ver-
sion B. Here are solutions for version A:

(cons '(A B) '(C))

(append '((A B)) '(C))

The calls were worth 2 points each. Deductions are listed below. If a particular error was
made in each part, points were deducted in each part except as noted.

–1 one misparenthesized argument
–2 two misparenthesized arguments

–2 using the wrong number of arguments to cons

–1 any misquoting
–.5 omitting one of the two quotes

–.5 omitting the outside parentheses (deducted only once)

 2

Problem 2 (6 points)
This problem was the same in both versions.

Part a asked you where a crash occurs when ttt is called with a full board. With such a
call, all of i-can-win?, opponent-can-win?, i-can-fork?, and i-can-
advance? return #f. Finally best-free-square is called, which calls first-
choice, which calls first on an empty sentence.

This part was worth 2 points, 1 for the procedure and 1 for the explanation. Generally you
had to mention first-choice to earn any points.

Part b, worth 4 points, was to detect a full board represented as a sentence of triples. The
most popular correct answer was

(define (all-squares-filled? triples)
 (empty? (keep integer? (accumulate word triples)))

An alternative was to handle each triple separately:
(define (all-squares-filled? triples)
 (empty? (keep has-blank-space? triples))

(define (has-blank-space? triple)
 (not (empty? (keep integer? triple))))

(define (has-blank-space? triple)
 (< (+ (appearances 'o triple) (appearances 'x triple)) 3))

By far the most common error was to compare an integer or a square to a triple, for in-
stance by saying

(keep integer? triples)

A similar error was to compare an integer to a word of triples:
(number? (accumulate word triples))

Both these errors lost 2 points.

Another common error was to assume the argument was in position format, i.e. a word
containing x’s, o’s, and _’s, rather than a sentence of triples. This simplified the problem
significantly,

(define (all-squares-filled? position)
 (not (member? ‘_ position)))

and thus lost all 4 points for this part.
Some other deductions are listed below. No points were deducted for parenthesis errors.

–1 a small logic error, e.g. switching true for #f

–1.5 two small logic errors
–1 building a sentence of empty words, then checking if it’s empty

–2 using every instead of keep

–4 using possibilities or preferences in an attempt to copy first-
choice

 3

Problem 3 (5 points)
Part a of this problem was to supply a good comment for the procedure

(define (mystery sent)
 (= 1 (remainder (accumulate + sent) 2)))

(In version B, the comparison was with 0 rather than 1.) As was explained in lab, a good
comment describes the argument and the result value: sent is a sentence containing only
integers (otherwise the call to + or to remainder would crash), and the value returned
is true if the sum of the integers is odd (even in version B) and #f otherwise.

This part was worth 2 points, 1 for describing sent and 1 for describing the return value.
To earn the sent point, you had to specify that sent consists only of integers (we ac-
cepted “numbers” too). To earn the result point, you had to use the word “odd” or “even”;
merely parroting back the code was insufficient.
In part b, you were to complete the recoding of mystery, moving the remainder call
into the accumulate. The answer:

(define (mystery2 sent)
 (= 1
 (accumulate
 (lambda (a b) (remainder (+ a b) 2))
 sent)))

This part was worth 3 points. You needed a two-argument procedure and a lambda
body to earn any points on this part. 1 point was deducted for each flaw in the lambda
body, for example:

arithmetic syntax for remainder instead of Scheme syntax;
use of entire sentence for one of accumulate's arguments instead of individual
elements;
wrong computation (e.g. (+ (remainder a 2) (remainder b 2)))

Problem 4 (6 points)
This problem was the same in both versions. It asked you to find three illegal Roman
numerals for which decimal-value returns 5, and to list calls to roman-sum that
are made as a result of each computation. Here are four such numerals.

illegal Roman numeral resulting calls to roman-sum
iiiii (roman-sum (1 1 1 1 1))

(roman-sum (1 1 1 1))
(roman-sum (1 1 1))
(roman-sum (1 1))
(roman-sum (1))

ivi (roman-sum (1 5 1))
(roman-sum (1))

iiv (roman-sum (1 1 5))
(roman-sum (1 5))
(roman-sum ())

vx (roman-sum (5 10))
(roman-sum ())

 4

Each correct illegal Roman numeral earned you 1 point; each correct set of calls to ro-
man-sum earned you 1 point. An incorrect Roman numeral probably lost both points.

You lost ½ point for each inclusion of a call to roman-sum with an empty argument
where it should not have appeared (for iiiii and ivi), and for each omission of that
call where it should have appeared (for iiv and vx). You lost 1 point for a call to ro-
man-sum that would not have appeared in a correct trace.

Omitting all the recursive calls to roman-sum lost you 2 or 3 points, depending on how
much information you provided about how the result 5 was determined.

Problem 5 (9 points)
In this problem, you completed an accumulating recursion for the split procedure. The
problem was the same on both versions. Here is a solution; code you were to add is un-
derlined and numbered.

(define (split wd)

 (helper
 wd

 "" ; 1: OK to say (word) or (word "")

 '())) ; 2: OK to say (sentence)

(define (helper wd wd-so-far sent-so-far)
 (cond

 ((empty? wd) (sentence sent-so-far wd-so-far) ; 3:

 ((equal? (first wd) "|")
 (helper
 (bf wd)

 "" ; 4:

 (sentence sent-so-far wd-so-far))) ; 5:

 (else
 (helper
 (bf wd)

 (word wd-so-far (first wd)) ; 6:

 sent-so-far)))) ; 7:

This solution involved nested accumulations, one to build up each word, the other to in-
clude successive words into the result sentence.

 5

Points were allocated as follows.
• Blanks #1 and #2: ½ point each. A common answer that received a ½-point deduction

was '(""); see below for a reason that this deduction might be incorrect.

• Blank #3: 2 points, 1 for sent-so-far and 1 for wd-so-far. Common answers
were sent-so-far (1 point deducted, but see below), (sentence wd-so-
far) (1 point deducted), and '() or "" (2 points deducted).

• Blank #4: 1 point.
• Blank #5: 2 points. A common error was (sentence wd-so-far), which lost 1

point.

• Blank #6: 2 points. A common error was (word (first wd)), which lost 1
point.

• Blank #7: 1 point.

Overall, points were distributed into three categories: 1 for initialization, 4 for accumula-
tion of the characters in each word, 4 for accumulation of the sentence.

Another common error was to switch the arguments in blanks #3, 5, and 6, thereby build-
ing each word or the sentence in reverse order. Switching the arguments in blanks #3 and
5 lost ½ point, as did switching the arguments in #6. All parenthesis errors collectively
were worth a ½-point deduction. Extraneous empty words also lost ½ point, but see be-
low.
Including an extra call to split or helper in any of the cond cases lost the points for
that case (1, 3, or 3 respectively).

After the grading, we became aware of an alternate solution, shown below. The underly-
ing approach is to ignore the third argument to helper, and have the second argument
keep track of the state of the accumulation. Here is the code; the ignored third argument
to helper is omitted, and code to be added is underlined.

(define (split wd)
 (helper wd '(""))) ; 1

(define (helper wd so-far)
 (cond
 ((empty? wd) so-far) ; 2
 ((equal? (first wd) "|")
 (helper (bf wd) (sentence so-far ""))) ; 3
 (else
 (helper
 (bf wd)
 (sentence ; 4
 (bl so-far)
 (word (last so-far) (first wd)))))))

 6

Points for this approach would be allocated as follows.
• Blank #1: 1 point.

• Blank #2: 1 point.
• Blank #3: 2 points.

• Blank #4: 5 points, 3 for the call to sentence, 2 for the call to word.

If your solution took this approach, we would be happy to reevaluate it using the point
allocations just described.

Problem 6 (8 points)
This problem involved the analysis of code to verify that a given word or sentence is the
result of compression as implemented in an earlier homework. Versions differed only in
the sequence of parts a-c.

You were asked to identify sample arguments that would be incorrectly classified by the
code, either because a true value is returned when #f is desired, #f is returned for a cor-
rect result of compression, or a crash happens.

• Incorrect classification of a correct result of compression is not possible.
• A sentence that's not a correct result of compression for which result-of-

compression? returns true is (1 1). In general, any single 1 or group of 1's (e.g.
(4 1)) following another single 1 or a group of 1's produces a true value incorrectly.
(The same applies to single 0's or groups of 0's.)

• A sentence that ends with a value greater than 1, which is not the result of compres-
sion, results in a crash.

The three examples were worth 1 point each. Common errors were misclassification of an
empty sentence (a correct result of compression; we reminded you at the exam that
true-for-all? should return true for an empty argument) or a sentence containing
nonnumbers (ruled out by the first true-for-all? call).

Part b involved locating and explaining the bugs. (You didn't need to fix them.) There are
three bugs:

• legal-starting-with-compressed? in the second and clause accesses the
second word in its argument sentence without making sure that the sentence contains
at least two words.

• Both legal-starting-with-uncompressed? and legal-starting-
with-compressed? fail to check the next item or group to make sure that as
much as possible of the sentence is compressed. To identify these bugs, you could
have noted either that extra and clauses are needed, or that the recursive call is made
prematurely.

This part was worth 5 points, 1 each for the three bugs, 1 each for the two explanations.
You lost 1 point for each missing item and ½ for each vague explanation. Common errors
were identifying non-bugs, identifying a bug without providing an explanation, and giv-
ing the same explanation twice.

