
CS3 Spring 05 – Midterm 2

Standards and Solutions

This midterm was… difficult. More difficult that we as staff thought it would be.
As such, grades were lower than we expected; consequently, steps will be taken to
raise them when we calculate how much this midterm contributes to your final
grade.

The minimum score, out of 28, was a 2; the highest score, a 26. The grade
distribution looks like this:

MT2SCALE

26.0
24.0

22.0
20.0

18.0
16.0

14.0
12.0

10.0
8.0

6.0
4.0

2.0

20

10

0

Std. Dev = 5.67
Mean = 15.1

N = 79.00

Problem Left-handed accumulate (4 points)
Consider the higher order procedure l2r-accumulate, which works much like the
accumulate that you are familiar with. The main difference, as you might expect, is that
l2r-accumulate starts at the left of its input sentence, moving to the right.

(l2r-accumulate + '(1 2 3 4))  10
(l2r-accumulate – '(1 2 3 4))  -8
(l2r-accumulate word '(abra ca da bra))  abracadabra

Part A: Write l2r-accumulate. You can assume that it will only have to operate on
sentences, rather than words. To make things easier, you can assume that the procedure that
l2r-accumulate is given as the first parameter will only return words, rather than
possibly sentences.

Instructional Login _________________

To make headway on this problem, you needed to be somewhat comfortable with
what accumulate does. There are several ways to solve this problem; the easiest
of which is a relatively simple recursion:

;; solution 1, proc must return a word, or a sent of length=1
(define (l2r-accumulate1 proc sent)
 (cond
 ((empty? sent) '())
 ((empty? (bf sent))
 (first sent))
 (else
 (l2r-accumulate1 proc (se (proc (first sent)
 (first (bf sent)))
 (bf (bf sent)))
))))

Note that there are two base cases. The first deals with empty sentences, and will
only be encountered when l2r-accumulate is called with an empty sentence.
The second base case is necessary for the recursion to terminate properly.

The single recursive case for this solution should be understandable. Note,
however, that if the proc returns a sentence of length 2 or greater, this recursion
will never terminate. The problem did specify that you could assume that this
would never happen.

Other solutions worked with any procs that returned sentences. Here is an
accumulating recursive solution:

(define (l2r-accumulate2 proc sent)
 (if (empty? sent)
 '()
 (else (l2r-helper2 proc (first sent) (bf sent)))))

(define (l2r-helper2 proc so-far yet-to-accumulate)
 (if (empty? yet-to-accumulate)
 so-far
 (l2r-helper2 proc
 (proc so-far (first yet-to-accumulate))
 (bf yet-to-accumulate))))

You could also write a solution similar to how accumulate was written, but have it
use bl and last, rather than bf and first (this one is a little tricky to think
about):

(define (l2r-accumulate3 proc sent)
 (cond ((empty? sent) '())
 ((empty? (bf sent)) (first sent))
 (else (proc (l2r-accumulate3 proc (bl sent))
 (last sent)))))

Whew! There was one more (cheap) solution, involving reverse and
accumulate which some of you tried. We meant to restrict you from using

Page 2

Instructional Login _________________

reverse, but we forgot, so this solution earned points if done correctly. You had
to remember to reverse the arguments passed to the accumulate! (And, you
would have to reverse the result sentence if l2r-accumulate were required
to handle procs that returned sentences as well as words).

(define (l2r-accumulate4 proc sent)
 (if (empty? sent)
 '()
 (accumulate (lambda (l r) (proc r l))
 (reverse sent))))

The distribution of scores on this question showed that many of you did
reasonably well on this problem:

MT2Q1

4.03.02.01.00.0

30

20

10

0

Std. Dev = 1.37
Mean = 2.1

N = 79.00

Grading: As far as base cases went, you were required to have a case for an empty
input, as well as whatever base cases were required for your recursion to work.
You did not explicitly have to account for a one-word sentence to be input. The
answers given to this question were so varied that they were mostly graded on a
case-by-case basis, but here were some "common" problems:

-4 if you unsuccessfully used some combination of higher-order functions
-2 if you ended up writing a right-to-left accumulate
-2 if you did not combine the result of a recursive call properly
-1 if you missed a necessary base case
-1 if your procedure skipped over words
-1 if your procedure did not properly use a result-so-far ½ is
-½ if you missed the empty-sentence base case
-½ if you returned the sent instead of (first sent)
-½ if the arguments to the input function were backwards (except, -2 with

solution #4…)

Page 3

Instructional Login _________________

Problem Certifying procedures (4 points)
Every can only take procedures (as its first argument) that return either a word or a
sentence. Write the procedure certify which will ensure that the procedure given to an
every will not cause an error due to its return value. Certify is used like this:

 (every (certify a-proc) '(a sentence to be mapped))
 (every (certify a-math-proc) '(1 2 3 4 5 6 7 8 9))

If the procedure passed to certify won't return a word or sentence, make it so that the
word "output-error" is returned instead. For instance:

(every number?
 '(friends 4 evah))  ERROR
(every (certify number?)
 '(friends 4 evah)) 

("certify-error" "certify-
 error" "certify-error")

This problem threw many of you for a loop. The first thing to realize is that
certify needs to return a procedure, because every requires that first parameter
to be a procedure. Returning a procedure that already exists is easy in Scheme, as
easy as returning a word or a sentence. Returning a procedure that is uniquely
created each time, depending on the inputs, will necessarily involve using a
lambda form! Remember those?

Certify takes a procedure as its argument; that should be obvious from the
examples in the problem statement. Depending on the return values of that
procedure, certify will either return a procedure that runs the original
procedure on its arguments, or return a procedure that returns "certify-
error".

Several of you tried to make certify return an existing procedure – namely,
the procedure that certify was given as a parameter – but ran into a problem:

(define (certify proc)
 (if (or (word? (proc 'no-idea))
 (sentence? (proc 'what-goes-here)))
 proc
 'certify-error))

The most obvious problem is what to pass as parameters to proc when you
want to test its return value: because certify isn't being run when the call to
every is being processed (as opposed to when it is being declared), you don't
know what the inputs to proc are should be! Hence the silly arguments like,
above, 'no-idea and 'what-goes-here. Something is very wrong, as some of
you who wrote it this way probably realized.

Another obvious problem is that the return value 'certify-error is not a
procedure, so the every will bomb. A few of you got around this with a

Page 4

Instructional Login _________________

(lambda (x) 'certify-error) instead; clever, but this doesn’t solve the first
problem.

Here is the right solution, because the call to certify dynamically creates a
procedure which does the certification every time it is run. Note the lambda:

(define (certify proc)
 (lambda (wd)
 (if (or (word? (proc wd))
 (sentence? (proc wd)))
 (proc wd)
 "output-error")))

Procedures like certify are called wrapper procedures, because they wrap other
procedures and are able to do things like check the inputs, test whether the
procedure will cause an error when run (something that Scheme can't directly do,
but other programming languages can), modify the outputs, etc.

Grading: You lost two points if did not use lambda as the return value, one point
if you didn't check both word? and sentence? completely, and one point if
the return values (for the right or wrong cases) were incorrect.

Most of you had lots of trouble with this problem:

MT2Q2

4.03.02.01.00.0

50

40

30

20

10

0

Std. Dev = 1.45
Mean = 1.0

N = 79.00

Problem (Re)cursing the tree (1/2/1/6 points)
This question concerns a data representation for a tree (i.e., the thing that grows in the
ground, has a trunk, etc.). The representation of a tree is a sentence of branches, where each
branch is a word. The first branch in the sentence is the trunk.

Page 5

Instructional Login _________________

Each branch either has a certain number of leaves and no other branches coming off of it
(called an "end-branch"), or has no leaves but connects to some number of other sub-
branches. The other sub-branches are also contained in the tree data-structure.

An end-branch is represented by a word that starts with an "e" and ends with a number,
which is the number of leaves on the end-branch. For instance, "e12" is a end-branch that
has 12 leaves.

A non-end-branch starts with an "x", and ends with a series of branch positions in the tree
sentence, with each position separated by a "-". For
instance, the branch "x3-4-5" has three sub-branches
which reside at position 3, 4, and 5 in the tree-sentence
respectively.

Here is a "tree" that has 6 branches, including the trunk:

(x2-3-4 e2 x5-6 e4 e3 e1)

Part A: Write the predicate that tests whether a branch is an end-branch. Name this
procedure and its parameter(s) properly.

These first three parts of problem 3 were meant to be easy! For many they were,
but it seemed like others spent way to much time on them. Data abstraction is a
difficult concept, to be sure. For all these parts, you lost ½ a point for naming the
procedure or its parameter improperly (a common mistake was to name the
parameter word or sent).

(define (end-branch? branch)
 (equal? (first branch) 'e))

You lost ½ a point for including the unnecessary (if … #t #f) form here.

Part B: Write the selector procedure that returns the number of leaves on a branch. Name
the procedure and its parameter properly.

(define (number-of-leaves branch)
 (if (end-branch? branch)
 (bf branch)
 0))

Any attempts at recursion or HOFs lost a point. Forgetting about non-end-
branches lost a point, since this was mentioned during the exam.

Part C: Write the selector procedure that returns the trunk for a given tree. Name the
procedure and its parameter(s) properly.

Page 6

Instructional Login _________________

(define (trunk tree)
 (first tree))

As per the last sentence in the first paragraph of this problem: there was no need
to find the trunk via recursion or something like that! Some of you checked to
see that the tree wasn't empty, which was a great idea (wish I had thought of it
when writing the problem).

Part D: Write count-all-leaves
Assume that the procedure sub-branches has been written, which takes two arguments:
a branch and a tree that contains it. sub-branches returns the sentence containing the
sub-branches connected to the branch given as the first argument.

(sub-branches
 'x2-3-4
 '(x2-3-4 e2 x5-6 e4 e3 e1))

 (e2 x5-6 e4)

(sub-branches
 'e3
 '(x2-3-4 e2 x5-6 e4 e3 e1))

 ()

Fill in the blanks on the procedures below, such that the procedure count-all-leaves
will return the total number of leaves on a tree (You only need to count leaves on end-
branches). Note that you must use only the selectors and predicates that you have defined
earlier, and sub-branches, when accessing a branch or tree. For instance, using a
higher-order function to access a tree as a sentence is a data abstraction violation!

(define (count-all-leaves tree)
 (count-all-leaves-helper (trunk tree) tree))___

(define (count-all-leaves-helper branch tree)
 (if (end-branch? branch)
 ___(number-of-leaves branch)__;end-branch base case
 (accumulate ;recursive case
 _______+_____________
 (every
 (lambda (br) (count-all-leaves-helper br tree))
 (sub-branches branch tree)
))))

This is tree recursion. Although the tree is represented by a sentence, it would be
a data-abstraction violation to access it via sentence selectors (like first, bf, or
the higher order functions). Instead, the way you "traverse" this tree is by starting
at the trunk and following all of the sub-branches, and all of their sub-branches,
etc, until they terminate in an end-branch. The number of leaves for each end-
branch is then added together.

Page 7

Instructional Login _________________

This is recursive: for each sub-branch, you do the same thing as the trunk. One
difference here is that you don't know how many recursive calls you are going to
make at each step, since it depends on how many sub-branches there are. To that
end, an every is used to make a recursive call for each sub-branch.

You received, basically, 1 point for each blank, except for the 2nd to last one, for
which you receive a point for the lambda for and a point for the recursive call.
Small data abstraction violations cost ½ a point (e.g., (first tree) in the
first blank); larger ones cost more.

The distribution for question 3 (all four parts) looks like:

MT2Q3TOT

10.09.08.07.06.05.04.03.02.01.00.0

20

10

0

Std. Dev = 2.27
Mean = 5.7

N = 79.00

Problem Rewrite recursion using higher-order functions. (6 points)

Consider the following procedure:

(define (recurring-mystery sent cut)
 (cond ((empty? sent)
 "")
 ((special? (first sent))
 (word (first sent)
 cut
 (recurring-mystery (bf sent) cut)))
 (else
 (recurring-mystery (bf sent) cut))))

Page 8

Instructional Login _________________

(For this procedure to run without errors, it may need additional procedures to be defined
first). Write the procedure hoffing-mystery, without using any explicit recursion,
such that it will return the same values as recurring-mystery, given the same input.

This procedure takes the elements of a sent that satisfy the predicate
special?, puts cut in between each, and then collects them into a single
word. The right answer looks like this:

(define (hoffing-mystery sent cut)
 (accumulate word
 (every (lambda (wd) (word wd cut))
 (keep special? sent))))

Several of you forgot to do the accumulate, which meant that your code would
have returned a sentence rather than a word. We took off 2 points for this error.

Some of you had some problems using every and accumulate:

(define (hoffing-mystery sent cut)
 (accumulate (lambda (wd) (word wd cut))
 (keep special? sent))))

We took off 3 points for this error. The lambda is doing what should have been
done by the every, and the lambda to accumulate should take in two
arguments. Another common error:

(define (hoffing-mystery sent cut)
 (accumulate (lambda (x y) (word y cut))
 (keep special? sent)))

(define (hoffing-mystery sent cut)
 (accumulate (lambda (x y) (if (special? y) (word y cut)))
 sent))

We took off 3 points for these errors as well. In the both cases, we are only
checking the accumulated y value for special-ness, and completely ignored the
x value. Some had the same error, but evaluated the x instead of the y.

Another problem with the use of accumulate:

(define (hoffing-mystery sent cut)
 (accumulate (lambda (wd1 wd2) (if (word? wd2)
 (word wd2 cut) …))
 (keep special? sent))))

We took off 1 point for this error. The case (word? wd2) is always going to
return true because, well, it is always a word. That is the return value of
hoffing-mystery! We did something similar to this in lab, such as position
form diagonal: checking if the second argument to lambda is a word. However,
that was only when the accumulated value is a sentence in the end, and (word?
wd2) only applied to the first call to lambda.

Page 9

Instructional Login _________________

A last common problem with accumulate we saw:

(define (hoffing-mystery sent cut)
 (accumulate (lambda (wd1 wd2) (word wd2 cut wd1))
 (keep special? sent))))

We took off 1 point for this error. The obvious error is the order of wd1 and wd2
should be switched. The more important is that the last (rightmost) “special”
word does not have a cut included at the end of it.

Some of you passed in just sent as the second argument to every or
accumulate, and handled the special? inside the lambda. This is how the
lambda looked like:

(define (hoffing-mystery sent cut)
 (accumulate word
 (every (lambda (wd) (if (special? wd)
 (word wd cut)
 wd)
 sent)))

We took off 1 point for this error. If the word is not special, then it should not
be there at all! It is not just that it does not have a cut attached to it, we should
discard it completely. Try '(), or "" which will appear in what every returns, but
the empty words will disappear when (accumulate word …) is called.

The distribution of scores looks like:

MT2Q4

6.05.04.03.02.01.00.0

30

20

10

0

Std. Dev = 1.77
Mean = 3.9

N = 79.00

Page 10

Instructional Login _________________

Problem Rewrite a higher-order function as recursion (2/5 points)

Consider the following function:

(define (hof-of-horror sent)
 (every (lambda (v)
 (every (lambda (nv) (word v nv))
 (keep (lambda (wd) (not (vowel? wd)))
 sent)))
 (keep vowel? sent)))

Part (A)
 What does (hof-of-horror '(a b c d e)) return?

OK, this problem was difficult. There is a lot going on here, but most of you did
a good job understanding what hof-of-horror was doing: prepending each
vowel in the input sentence onto every non-vowel. The answer to part A, then:

(ab ac ad eb ec ed)

Part (B)
Write the function recursion-of-horror (which you can abbreviate as roh) so that
it will return the same values as hof-of-horror, given the same inputs. For roh and
helpers, do not use keep, every, accumulate, repeated, or lambda forms.

There were several ways to tackle this problem. The first thing to do, though, was
to call a helper procedure that got the parameter sent twice:

(define (roh sent)
 (roh-helper sent sent))

Some of you created simple recursions to duplicate what the keep originally did:
strip out all of the non-vowels in the first sentence, and all of the non-vowels in
the second (changing the second line above to (roh-helper (filter-vowels
sent) (filter-non-vowels sent))). Others did the filtering inside the
recursion that implemented, in essence, prepend-every. This second case
looked like:

;recurse down the possible vowels, calling roh-helper2 on each
(define (roh-helper v-sent nv-sent)
 (cond ((empty? v-sent) '())
 ((vowel? (first v-sent))
 (se (roh-helper2 (first v-sent) nv-sent)
 (roh-helper (bf v-sent) nv-sent)))
 (else (roh-helper (bf v-sent) nv-sent))))

;recurse down the possible non-vowels, prepending the
; current vowel onto each non-vowel
(define (roh-helper2 v nv-sent)
 (cond ((empty? nv-sent) '())
 ((not (vowel? (first nv-sent)))

Page 11

Instructional Login _________________

 (se (word v (first nv-sent))
 (roh-helper2 v (bf nv-sent))))
 (else (roh-helper2 v (bf nv-sent)))))

If the filtering was done outside of these helpers, there was a single recursive case
in each.

Some of you created a single helper procedure in the same way as
thoroughly-reversed in the lab materials: have two different sets of
recursive cases depending on whether you are processing the vowel-sentence or
the current vowel.

Grading: For part A, you lost one point if you only did half, or had the sentence
reversed. With other mistakes, you lost both points.

For the part B, there were basically three issues:
 ► separate vowels and consonants (1 point each)
 ► prepend-every (2 points)
 ► coordinating all of this (1 point)

In general, mistakes were one point each. Things like throwing away a consonant
before combining it with all vowels lost two points. Pairing up the first vowel and
first consonant, second vowel and second consonant, etc., lost two points. Both
of these were relatively common mistakes. Pairing up two letters only if they
happen to be next to each other lost three points, but this was a less common
mistake.

Another common mistake was not knowing the difference between an empty
sentence (it looks like () and is a sentence) and an empty word (it looks like ""
and is a word). The distribution of scores for both parts together looks like:

MT2Q5B

5.04.03.02.01.00.0

30

20

10

0

Std. Dev = 1.64
Mean = 2.0

N = 79.00

Page 12

