
CS3 Spring 05 – Midterm 2 
 

Read and fill in this page now 
 

Your name: ___________________________________ 

Your login name (e.g., cs3-aa): ___________________________________ 

Your lab section day and time: ___________________________________ 

Your lab T.A.: ___________________________________ 

Name of the person sitting to your left: ___________________________________ 

Name of the person sitting to your right: ___________________________________ 

 
Prob 0: ________ Prob 1: ________ Prob 2: ________ 

Prob 3:  ________ ________ ________ ________  

Prob 4:  ________ Prob 5:  ________ ________  

 Subtotal: _________/32         Scaled Total:   __________/28 
 
You have 50 minutes to finish this test, which should be reasonable; there will be 
approximately 20 minutes of leeway given past one hour.  Your exam should contain six 
problems (numbered 0-5) on 7 total pages.  Note that the problems at the end of this exam 
may take longer than those at the front! 
 
This is an open-book test. You may consult any books, notes, or other paper-based 
inanimate objects available to you.  Read the problems carefully.  If you find it hard to 
understand a problem, ask us to explain it.  If you have a question during the test, please 
come to the front or the side of the room to ask it. 
 
Restrict yourself to scheme constructs that we have seen in this classs.  (Basically, this excludes 
chapters 16 and up in Simply Scheme). 
 
Please write your answers in the spaces provided in the test; if you need to use the back of a 
page make sure to clearly tell us so on the front of the page. We believe we have provided 
more than enough space for your answers, so please don’t try to fill it all up. 
 
Partial credit will be awarded where we can, so do try to answer each question. 
 
Relax!  
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Problem 0.  (1 point) 

Put your login name on each page. Also make sure you have provided the information 
requested on the first page. 
 
 
Problem 1.  Left-handed accumulate (4 points) 

Consider the higher order procedure l2r-accumulate, which works much like the 

accumulate that you are familiar with.  The main difference, as you might expect, is that 

l2r-accumulate starts at the left of its input sentence, moving to the right. 
 
(l2r-accumulate + '(1 2 3 4))  10 

(l2r-accumulate – '(1 2 3 4))  -8 

(l2r-accumulate word '(abra ca da bra))  abracadabra 

 

Part A: Write l2r-accumulate.  You can assume that it will only have to operate on 
sentences, rather than words.  To make things easier, you can assume that the procedure that 

l2r-accumulate is given as the first parameter will only return words, rather than 
possibly sentences. 
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Problem 2.  Certifying procedures (4 points) 

Every can only take procedures (as its first argument) that return either a word or a 

sentence.  Write the procedure certify which will ensure that the procedure given to an 

every will not cause an error due to its return value.  Certify is used like this: 
 
   (every (certify a-proc) '(a sentence to be mapped)) 

   (every (certify a-math-proc) '(1 2 3 4 5 6 7 8 9)) 

 

If the procedure passed to certify won't return a word or sentence, make it so that the 

word "output-error" is returned instead.  For instance: 
 
(every number?  

       '(friends 4 evah)) 
 ERROR 

(every (certify number?)  

       '(friends 4 evah)) 
 

("certify-error" "certify- 

  error" "certify-error") 
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Problem 3.  (Re)cursing the tree (1/2/1/6 points) 

 
This question concerns a data representation for a tree (i.e., the thing that grows in the 
ground, has a trunk, etc.).  The representation of a tree is a sentence of branches, where each 
branch is a word.  The first branch in the sentence is the trunk. 
 
Each branch either has a certain number of leaves and no other branches coming off of it 
(called an "end-branch"), or has no leaves but connects to some number of other sub-
branches.  The other sub-branches are also contained in the tree data-structure. 
 

An end-branch is represented by a word that starts with an "e" and ends with a number, 

which is the number of leaves on the end-branch.  For instance, "e12" is a end-branch that 
has 12 leaves. 
 

A non-end-branch starts with an "x", and ends with a series of branch positions in the tree 

sentence, with each position separated by a "-".  For 

instance, the branch "x3-4-5" has three sub-branches 
which reside at position 3, 4, and 5 in the tree-sentence 
respectively.   
 
Here is a "tree" that has 6 branches, including the trunk: 
 
 (x2-3-4 e2 x5-6 e4 e3 e1) 

 
 
 
Part A:  Write the predicate that tests whether a branch is an end-branch.  Name this 
procedure and its parameter(s) properly. 
 
 
 
 
 
Part B:  Write the selector procedure that returns the number of leaves on a branch.  Name 
the procedure and its parameter properly.   
 
 
 
 
 
 
 
Part C:  Write the selector procedure that returns the trunk for a given tree.  Name the 
procedure and its parameter(s) properly. 
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Part D:  Write count-all-leaves  

Assume that the procedure sub-branches has been written, which takes two arguments: 

a branch and a tree that contains it.  sub-branches returns the sentence containing the 
sub-branches connected to the branch given as the first argument. 
 
(sub-branches  

  'x2-3-4  

  '(x2-3-4 e2 x5-6 e4 e3 e1)) 

 (e2 x5-6 e4) 

(sub-branches  

  'e3 

  '(x2-3-4 e2 x5-6 e4 e3 e1)) 

 () 

 

Fill in the blanks on the procedures below, such that the procedure count-all-leaves 
will return the total number of leaves on a tree  (You only need to count leaves on end-
branches).  Note that you must use only the selectors and predicates that you have defined 

earlier, and sub-branches, when accessing a branch or tree.  For instance, using a 
higher-order function to access a tree as a sentence is a data abstraction violation! 
 
(define (count-all-leaves tree) 

 

   

 

  ___________________________________________________ 

 

 

 

(define (count-all-leaves-helper branch tree) 

   (if (end-branch? branch) 

 

 

        ______________________________;end-branch base case 

 

       (accumulate                    ;recursive case 

 

           ________________________________ 

            

           (every 

 

 

                 __________________________________________ 

 

 

                 __________________________________________ 

       

                 )))) 



  Instructional Login _________________ 

  Page 6 

Problem 4.  Rewrite recursion using higher-order functions. (6 points) 

 
Consider the following procedure: 
 
(define (recurring-mystery sent cut) 

   (cond ((empty? sent) 

          "") 

         ((special? (first sent)) 

          (word (first sent)  

                cut 

                (recurring-mystery (bf sent) cut))) 

         (else 

          (recurring-mystery (bf sent) cut)))) 

 
(For this procedure to run without errors, it may need additional procedures to be defined 
first).   
 

Write the procedure hoffing-mystery, without using any explicit recursion, such that 

it will return the same values as recurring-mystery, given the same input. 
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Problem 5.  Rewrite a higher-order function as recursion (2/5 points) 

 
Consider the following function:  
 
(define (hof-of-horror sent) 

   (every (lambda (v) 

              (every (lambda (nv) (word v nv)) 

                     (keep (lambda (wd) (not (vowel? wd)))  

                           sent)) ) 

          (keep vowel? sent))) 

 

Part (A) 

   What does (hof-of-horror '(a b c d e)) return? 
 
 
 
 
Part (B) 

Write the function recursion-of-horror (which you can abbreviate as roh) so that 

it will return the same values as hof-of-horror, given the same inputs.  For roh and 

helpers, do not use keep, every, accumulate, repeated, or lambda forms. 
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