
CS3 Fall 05 – Midterm 1

Read and fill in this page now

Your name: ___________________________________

Your instructional login (e.g., cs3-ab): ___________________________________

Your lab section days and time: ___________________________________

Your lab T.A.: ___________________________________

Name of the person sitting to your left: ___________________________________

Name of the person sitting to your right: ___________________________________

Prob 0: Prob 1: Prob 2:

Prob 3: Prob 4 (a/b/c):

--- --- Prob 5 (a/b/c):

 Raw Total: /50 Scaled Total: /30

You have 70 minutes to finish this test, which should be reasonable; there will be
approximately 10 additional minutes of leeway given. Your exam should contain 6 problems
(numbered 0-5) on 10 total pages. It includes the code from the case study Difference Between
Dates Part II in an appendix at the end.

This is an open-book test. You may consult any books, notes, or other paper-based
inanimate objects available to you. Read the problems carefully. If you find it hard to
understand a problem, ask us to explain it. If you have a question during the test, please
come to the front or the side of the room to ask it.

Restrict yourself to Scheme constructs covered in chapters 3-6 and 11 of Simply Scheme, the
Difference Between Dates case study, parts 1 and 2, and the Roman Numerals case study. You can
always use helper procedures, and procedures from other questions you've answered.

Please write your answers in the spaces provided in the test; if you need to use the back of a
page make sure to clearly tell us so on the front of the page. We believe we have provided
more than enough space for your answers, so please don’t try to fill it all up.

Partial credit will be awarded where we can, so do try to answer each question.

Relax!

Instructional Login ________________

Problem (1 point, 1 minute)
Put your login name on the top of each page.
Also make sure you have provided the information requested on the first page.

Problem (7 points, 11 minutes). Fill in the blanks.
Each of the following parts has a blank that you need to fill in. For parts (1)-(5), the blank
follows an ; fill in the result of evaluating the scheme expression that comes before the .
If the scheme expression will result in an error, write ERROR in the blank.

(word 'go (word 'cal (word 'for (word 'evah (word "")))))

  __
(se 'go (se 'cal (se 'for (se 'evah (se "")))))

  __
(word (sentence 'word 'is 'the 'word))
  __
(sentence (word 'word 'is 'the 'word))

  __

(+ 3 ____________ 5)  ERROR

For parts (6)-(8), fill in the blank so that the resulting scheme expression evaluates to the
result shown. Don't use any parentheses. If it is impossible to do so, write IMPOSSIBLE in
the blank.

(define (doit x) (cond ((equal? x 'a) 'hah)
 ((equal? x 'b) 'hab)))

(doit ____________________)  ERROR

(or ______________ 'joe 'bob)  'joe

(and ______________ 'joe 'bob)  'joe

(Page 2)

Instructional Login ________________

Problem (7 points, 10 minutes). Line-em up and add-em.

Write a procedure add-em which takes a sentence as input, and returns a number. The
result number should be the sum of the numbers in the input sentence, starting at the
beginning and continuing until something other than a positive number is reached.

You may use helper procedures.

(add-em '(1 4 2 0 934 -3 5))  7
(add-em '(3 5 a 8 j 2))  8

(add-em '(1 2 3 4))  10
(add-em '(fred and sally sitting in a tree))  0

(Page 3)

Instructional Login ________________

Problem (8 points, 12 minutes): Celebrity poker needs programmers like you.
Write card-outranks? The procedure takes two cards and returns true if and only if
the first card is bigger than second.

Cards are represented by a two-character word, where the first character represents the rank
(a, k, q, j, 0, 9, 8, 7, 6, 5, 4, 3, and 2), and the second character represents the suit (s, h,
d, and c). For instance, 2h is the two of hearts, qc is queen of clubs, 0s is the 10 of
spades, etc. For this problem, consider all spades to rank higher than hearts, which all rank
higher than diamonds, which all rank higher than clubs.

(card-outranks? 'ac '3d)  #f
 (card-outranks? 'kh 'qh)  #t
 (card-outranks? '4s '4s)  #f

Comment all your procedures. Assume you have a working version of outranks?, as you
wrote in lab, to use. (Remember, outranks? takes two ranks and returns true if the first
is higher than the second.)

You need to use proper abstraction. In this case, you will need to define accessors, name
them meaningfully, and include comments indicating their purpose.

(Page 4)

Instructional Login ________________

Problem (3/3/12 points, 24 minutes): Can you span this?
Part a (3 points). Write days-until-new-year, which takes a date and returns the
number of days until the end of the year, inclusive.

Remember that you have the procedures in the Difference between Dates case study at your
disposal, including the day-span procedure. The answer should fit in the space below!

(days-until-new-year '(january 3))  363
(days-until-new-year '(december 31))  1

Part b (3 points). Write hours-until-new-year, which takes a date and returns the
number of hours until the end of the year. (Assume that you need to calculate from noon of
the date given).

 (hours-until-new-year '(january 3))  8700
 (hours-until-new-year '(december 29))  60
 (hours-until-new-year '(december 31))  12

(Page 5)

Instructional Login ________________

Part c (12 points). The following are buggy versions of the recursive procedure day-sum,
defined in the cases study Difference between dates, part II. (The code for the case study is
included as an appendix). The bugs result from small changes which are underlined.

For each version, note whether the bug creates a problem in the
• conditional ,
• the base case,
• making the problem smaller,
• calling the function recursively, or
• combining the recursive calls.

Also briefly describe in English the effect of the bug on the operation of day-span as a
whole (not just on day-sum)—this should take between 1 and 2 sentences for each case. You
might include an example call to day-span illustrating the problem, although this isn't
necessary with a sufficient explanation (and, might be wrong!).

Don't be too verbose! We may deduct points if our eyes start to bleed.

(define (day-sum first-month last-month)
 (if (>= first-month last-month)
 0
 (+ (days-in-month (name-of first-month))
 (day-sum (+ first-month 1) last-month))))

(define (day-sum first-month last-month)
 (if (> first-month last-month)
 0
 (+ (days-in-month (name-of first-month))
 (day-sum first-month (+ last-month 1)))))

(Page 6)

Instructional Login ________________

Part c continued.

(define (day-sum first-month last-month)
 (if (< first-month last-month)
 0
 (+ (days-in-month (name-of first-month))
 (day-sum (+ first-month 1) last-month))))

(define (day-sum first-month last-month)
 (if (> first-month last-month)
 1
 (+ (days-in-month (name-of first-month))
 (day-sum (+ first-month 1) last-month))))

(Page 7)

Instructional Login ________________

Problem (2/3/4 points, 12 minutes): Coins.
For the following problems, you will be working with coins:

Coin Coin name Value (in cents)
p Penny 1
n Nickle 5
d Dime 10
q Quarter 25

Part a. Fill in the blanks to write valid-coin?, which takes a coin and returns #t if it is
valid (i.e., in the table above) or #f otherwise:

(define (valid-coin? coin)

 (______________ coin ________________))

Part b. Write use-coin-to-pay, which takes a numeric amount that is owed and returns
the smallest-valued coin that is enough to pay that amount. If there is no single coin that
will cover the entire amount to pay, return "too-expensive". You can assume that
amount will be a positive number.

 (define (use-coin-to-pay amount)

Part c. Write test cases for your procedure use-coin-to-pay (you can abbreviate it).
Make sure to include the expected return value. Include enough cases to thoroughly test
your procedure.

(Page 8)

Appendix A: Difference Between Dates, part II code (given in appendix C).
(This is not a question!)

; Recursive computation of the difference between dates

; Return the number of days spanned by earlier-date and later-date.
; Earlier-date and later-date both represent dates in 2002,
; with earlier-date being the earlier of the two.
(define (day-span earlier-date later-date)
 (cond
 ((same-month? earlier-date later-date)
 (same-month-span earlier-date later-date))
 ((consecutive-months? earlier-date later-date)
 (consec-months-span earlier-date later-date))
 (else
 (general-day-span earlier-date later-date))))

; Access functions for the components of a date.
(define (month-name date) (first date))
(define (date-in-month date) (first (butfirst date)))

; Return true if date1 and date2 are dates in the same month, and
; false otherwise. Date1 and date2 both represent dates in 2002.
(define (same-month? date1 date2)
 (equal? (month-name date1) (month-name date2)))

; Return the number of the month with the given name.
(define (month-number month-name)
 (cond
 ((equal? month-name 'january) 1)
 ((equal? month-name 'february) 2)
 ((equal? month-name 'march) 3)
 ((equal? month-name 'april) 4)
 ((equal? month-name 'may) 5)
 ((equal? month-name 'june) 6)
 ((equal? month-name 'july) 7)
 ((equal? month-name 'august) 8)
 ((equal? month-name 'september) 9)
 ((equal? month-name 'october) 10)
 ((equal? month-name 'november) 11)
 ((equal? month-name 'december) 12)))

; Return true if date1 is in the month that immediately precedes the
; month date2 is in, and false otherwise.
; Date1 and date2 both represent dates in 2002.
(define (consecutive-months? date1 date2)
 (=
 (month-number (month-name date2))
 (+ 1 (month-number (month-name date1)))))

; Return the difference in days between earlier-date and later-date,
; which both represent dates in the same month of 2002.
(define (same-month-span earlier-date later-date)
 (+ 1
 (- (date-in-month later-date) (date-in-month earlier-date))))

; Return the number of days in the month named month-name.
(define (days-in-month month-name)
 (cond
 ((equal? month-name 'january) 31)
 ((equal? month-name 'february) 28)
 ((equal? month-name 'march) 31)
 ((equal? month-name 'april) 30)
 ((equal? month-name 'may) 31)
 ((equal? month-name 'june) 30)
 ((equal? month-name 'july) 31)
 ((equal? month-name 'august) 31)
 ((equal? month-name 'september) 30)
 ((equal? month-name 'october) 31)
 ((equal? month-name 'november) 30)
 ((equal? month-name 'december) 31)))

; Return the number of days remaining in the month of the given date,
; including the current day. Date represents a date in 2002.
(define (days-remaining date)
 (+ 1 (- (days-in-month (month-name date)) (date-in-month date))))

; Return the difference in days between earlier-date and later-date,
; which represent dates in consecutive months of 2002.
(define (consec-months-span earlier-date later-date)
 (+ (days-remaining earlier-date) (date-in-month later-date)))

; Return the name of the month with the given number.
; 1 means January, 2 means February, and so on.
(define (name-of month-number)
 (item
 month-number
 '(january february march april may june
 july august september october november december)))

; Return the sum of days in the months represented by the range
; first-month through last-month.
; first-month and last-month are integers; 1 represents January,
; 2 February, and so on.
; This procedure uses recursion.
(define (day-sum first-month last-month)
 (if (> first-month last-month) 0
 (+
 (days-in-month (name-of first-month))
 (day-sum (+ first-month 1) last-month))))

; Return the number of the month that immediately precedes the month
; of the given date. 1 represents January, 2 February, and so on.
(define (prev-month-number date)
 (- (month-number (month-name date)) 1))

; Return the number of the month that immediately follows the month
; of the given date. 1 represents January, 2 February, and so on.
(define (next-month-number date)
 (+ (month-number (month-name date)) 1))

; Return the difference in days between earlier-date and later-date,
; which represent dates neither in the same month nor in consecutive months.
(define (general-day-span earlier-date later-date)
 (+ (days-remaining earlier-date)
 (day-sum
 (next-month-number earlier-date)
 (prev-month-number later-date))
 (date-in-month later-date)))

(Page 10)

