CS 3, MIDTERM #2
Professor Dan Garcia
Fall Semester 2002
Test given 17 October 2002.

Exam topic: Recursion

NOTE:
* There were two parts to this exam.
» Part 1, worth 40 points, was done by hand.
» Part 2, worth 10 points, was done with a computer.

CS 3, MIDTERM #2
Professor Dan Garcia
Fall Semester 2002
Test given 17 October 2002.

Exam topic: Recursion

THIS IS PART 1 (ONE) OF THE EXAM.

Question 1: What a difference a day makes... (13 points

Your friend tells you about a fun thing to try with a seq@esicnumbers. She asks you to
write as many numbers as you wish in a row, like this:

3 5 0 -3 10

* Then,for all adjacent pairs of numbers, find the absolute value of theirelifoe
and write that below each pair.

* When you are done you will have a new sequence one elsiratér than the
one you started with.

* Inthe example below,3 - 5 2, so 2 was the first number in the second row.
Similarly, (5 - 05, [0 - -3F3, etc.

» She says you then to continue to do this until youedirevith a signle number,
called thdast-differenceE.g.,

Row 1:3 5 0 -3 10 ;original sequence

Row 2: 2 5 3 13 :abs value of RDdifferences
Row 3: 3 2 10 ;:abs-value of ROW2aléhces
Row 4: 1 8 ;abs-value of ROW3atdhces
Row 5: 7 ;:abs-value of ROW4 differneces

* You are to write a program to do this, but we’ll help yathwhe steps.

* Your partner writes a helper function calkgols-differenceghat takes a sentence
of numbers and returns the sentence of the absolutesvaf the differences of
successive elements. That is, if the inputalis-differencesere one of the rows
above, it would return the row below &9 a sentence)

a. Fillin the blanks to complete the functiast-differencevhich computes thiast
differenceof a sentence of numbeiou MAY NOT define any helper
functions, but assumeabs-differencess available (5 points.)

»INPUTS: A sentence of numbers.

' REQUIRES: The sentence be non-empty.

SIDE-EFFECTS: None

' RETURNS: The last differenaeumberof the sentence, i.e., the results of taking the abs
value of adjacent differences over and over until amaber is left.

. EXAMPLE: (last-difference ‘(350 -3 10y 7

(define (last-difference s)
(if)

)

b. What pattern ifast-differnece?Circle one- 1 point.)

MAPPING FINDING COUNTIN FILTERING TESTING
COMBINING

c. Your partner then disappears to Hawaii and takesdifferencesvith her. Fill in
the blanks to completabs-differencethat takes a sentence of numbers and
returns the absolute value of the differences of ssoeeslements.
* Feel free to ussecondwhich returns theecondtem from a word or

sentence (similar tbrst.)

* Feel free to usabs,which returns the absolute value of a number.
* You MAY NOT define any helper functions(5 points.)

INPUTS: A sentence of numbers.

' REQUIRES: The sentence has at least 2 elements.

:SIDE-EFFECTS: None

' RETURNS: A sentence containing the abs. value of iffereinces of successive
elements.

. EXAMPLE: (last-difference (350 -3 10y (25 3 13)

(define (abs-difference s)

(if

d. As you can guess, sometimes two different sentencdaqethe samiast-
difference Write down two sentences that have the same lastreliice of 1.
What makes this challenging is thegichof the six blanks below must be filled
with adifferent single-digit number from 0 through Bhere may be multiple
solutions (2 points.)

» (last-difference (L »1
» (last-difference (1

Take a deep breath, you're about one-third of the way done!

Question 2: Solving a furmystery... (13 points)
Your CS3 friend loves solving mysteries and writes thiewiahg function (for all
guestions on this page, assume function arguments atadleft-to-right):

(define (mystery n ans)
(if(=n0)
ans
(se n (mystery (- n 1) (se ans n)))))

a. IsmysteryTAIL or EMBEDDED recursion? Circle one (1 point.)
a. TAIL
b. EMBEDDED
b. What does (mystery 1 ‘cal) return? If this is amersay what the error is. If it is
an infinite loop, write “it never returns” (1 point).

c. What does (mystery 2 ‘cal) return? If this is amersay what the error is. If it is
an infinite loop, write “it never returns” (1 point).

d. What does the following expression return? If thisigmior, say what the error
is. If it is an infinite loop, write “it never returhg6 points).

e. Provide values for the blanks which cammesteryto return the values listed. If it
is impossible, circle the word IMPOSSIBLE on the ight (4 points).
> (count (mystery ¥ 6 IMPOSSIBLE
> (mystery ____ ‘caly» goes into an infinite loop. IMPOSSIBLE
> (/ 5 0)> ERROR! Division by zero.
> (mystery (/' 5 0)» goes into an infinite loodMPOSSIBLE

(turn the page for question 3)

Question 3: The students +ed and +ed like rabbits... (13 pds)

We are going to look at the functiomultiply-then-adda procedure that takes
three arguments a, b, and cand multiples the firstatwebthen adds the third. The
catch is thaYOU MAY NOT USE * OR / from scheme! Here are the specs:

INPUTS: Numbers a, b, and ¢

' REQUIRES: a, b, and c are not negative.

' SIDE-EFFECTS: none

) RETURNS: The same thing that (+ (* a b) c) does

 EXAMPLE: (multiply-then-add 3 4 100» 112. (3 *4) + 100 = 112,

a. Write a version ahultiply-then-addisingEMBEDDED recursion, without
using * or /.You MAY NOT define any helper functions.(6 points)

(define (multiply-then-add a b c)

b. Write a version omultiply-then-addusing TAIL recursion, without using *
or /. YouMAY NOT define anv helper functions (6 points)

(define (multiple-then-add a b c)

c. Take alook at yodlMBEDDED solution in (A) above. It might be that the
restrictions we placed on the inputs in the REQUIRE&Sisn were too strict.
IF you think the earlier REQUIRES section was fitiecle it above and
leave the box below blankOtherwise cross it offandwrite a new
REQUIRES section_based on your (A) solutiobelow.
" REQUIRES:

CS 3, MIDTERM #2
Professor Dan Garcia
Fall Semester 2002
PART Il given 22 October 2002.

Exam topic: Recursion

THIS IS PART 2 (TWOQO) OF THE EXAM, THE COMPUTER PART

For this exam, pretend you know nothing about higher-order functions or lambda.
You are to use only recursion here.

THE SETUP Log in to the computer in front of you and tyjpeiiz. Emacs will open up
with some buggy code in oen buffer astkin another. You are welcome to use this to
help answer these questions; you may not run other progsant mail, etcYou may
find it faster to finish it all on paper first, then use stk hieak your work.

THE STORY (there is a fair bit of reading to set up the questiondbutt despair- the
guestions on the other side of this page don't require mutimgvto answer)

Throughout the semester you have been asked to chofeserdipartners for your
homework and labs. As you can imagine, it's hard for the d keep track of all these
partnerships. It would be very handy to have a functiahtakes a sentence of the first
names of everyone in section and returns a senteradktloé possible student
partnerships that could ever result (by concatenating tiegpanames together with a
dash in-between.) For exampleaifaandanwere chosen to be partners, we would
represent that partnershipasa-dan You may assume that you can never be partners
with yourself and that all student names in the classinique.

Sometimes, however, there are some limitations atoan be paired with whom. For
example, the TA might only want partnerships from stugleto live in separate dorms,
or from students who were the same age, or who had hgéyent heights, etc. If two
students can be paired together, we’ll cal them “goodhpest

To help with this process, we are going to write a fumctialledall-good-partners
which takes two arguments:
» good-partners?a predicate which takes two student names and returfresn i
only if the students are good partners according to theqvaestrictions.
» studentsa sentence with the first names of all the studeritse section.

all-good-partnersshould return a sentence (whose order doesn’t mafténg good
partners’ names concatenated together. Each potentia¢ship should be listed once
and only once. l.e. it doesn’'t make sense to list Bnd#idananddan-ana.

For example, let’s say all students in the sectiorewsamedina, bo, che, daranded,
and the TA mandates that all students partnerships bedestudents whose names
were the same length. Furthermore, let’'s say somecaote the predicatsame-name-
length?which returns #t if and only if the two names are theesength (#f otherwise.)
Then (all-good-partners same-name-length? ‘(ana bo e¢hedjawould return (ana-che
ana-dan che-dan bo-ed) in any order. Note that the otkent@l partnershipsina-bo,
ana-ed, bo-che, bo-dan, che-aaddan-edare not ‘good’ and would not be included
because their names have different lengths.

THE QUESTIONS
We’'re going to writeall-good-partnersby first debugging its helper function, calledir-
with-others(below we have changed A SINGLE LINE) from a perfeairking version
of the function) pair-with-otherstakes four arguments:

» good-partnersq{the predicate mentioned earlier.)

* person(a particular student’s name as a word)

» others(the sentence of remaining potential student partners), and

» answer(the current answer so far)
and returns a sentenceallf the good partnerships involviqgerson.For example:

> (pair-with-others same-name-length? ‘bo ‘(che dan gp)>((bo-ed)

(define (make-partners student-a student-b) ;;helper functio
(word student-a ‘- ‘student-b))

(define (pair-with-others good-partners? person others apswer
(cond ((empty? others) answers);; linel
((good-partners? person (first others));; line 2
(pair-with-others good-partners? ;; line 3
person ;; line 4
(bf others) ;; line 5
se (make-partners person (first others))))) ;;line 6
(else
(pair-with-others good-partners? ;; line 7
person ;; line 8
(bf others) ;; line 9
answer)))) ;; line 10
a. Why ispair-othersbuggy?Fill in the blanks for the bug that appliesand provide the
simplest yournameinput that makes the statement correct and trigga@ysthat bug.
Then change only one line to fix the err@injplest =fewest students in the ‘others’
input sentencejourname= you must supply your own names for the input students. You
may not useana, bo, che dan ored Be creative.) You might find it handy to write
same-name-lengthf@r online testing. (4 points)

It rejects good partnerships (when it shouldn’t.)E.g., (pair-with-others same-name-length?
returns when it should return

It accepts bad partnerships (when it shouldn’t.E.g., (pair-with-others same-name-length?

returns when it should return

It can go into an infinite loop (when it shouldn’t. E.g., (pair-with-others same-narexgth? ‘(
returns when it should return

“Replacing line with

0)

0)

will fix the bug so thapair-with-othersworks correctly on all input”.

(define (all-good-partners good-partners? students)
(if (empty? students) ;;line 1
‘() »line 2
(se (pair-with-others good partners? (first students)estts ‘() ;;line 3
(all-good-partners good-partners? (bf students))))) 4ine

b. Above you seall-good-partnersAs before, we have changedly a
single linefrom theperfect workingversion to introduce a bug. Complete
the statement below with tlsmplest surnameinput that triggers the bug
(simplest =fewest people in the ‘students’ input sentelyoeirname you
must supply your own name for the students. May not useana, bo,
che dan ored Be creative.) If you wish, experiment with your oeli
version ofall-good-partnerg4 points).

(all-good-partners same-name-length?

returns whleouild return

. Replacing line
will fix t

thatall-good-partnersvorks correctly on all input.

c. Let's say your TAdoesn't careabout the silly rules which restrict
partnerships. Usingll-good-partnerswrite all-partnerswhich returns all
possible partners without restrictions. For example:

> (all-partners ‘(ana bo che dan ed))
(ana-bo ana-che ana-dan ana-ed bo-che bo-dan bo-edrcbbeedad dan-ed)

The partners can be in any order in the sentenceméyuwrite a one-line helper
function if you need it. (2 points)

(define (all-partners students)

;;Below you may write a one-line helper function iuyneed...

(define ()

