
CS 3, MIDTERM #2
Professor Dan Garcia

Fall Semester 2002
Test given 17 October 2002.

Exam topic: Recursion

NOTE:
• There were two parts to this exam.
• Part 1, worth 40 points, was done by hand.
• Part 2, worth 10 points, was done with a computer.

CS 3, MIDTERM #2
Professor Dan Garcia

Fall Semester 2002
Test given 17 October 2002.

Exam topic: Recursion

THIS IS PART 1 (ONE) OF THE EXAM.

Question 1: What a difference a day makes… (13 points)

Your friend tells you about a fun thing to try with a sequence of numbers. She asks you to
write as many numbers as you wish in a row, like this:

3 5 0 -3 10

• Then, for all adjacent pairs of numbers, find the absolute value of their difference
and write that below each pair.

• When you are done you will have a new sequence one element shorter than the
one you started with.

• In the example below, 3 - 5= 2, so 2 was the first number in the second row.
Similarly, 5 - 0=5, 0 - -3=3, etc.

• She says you then to continue to do this until you are left with a signle number,
called the last-difference. E.g.,

Row 1: 3 5 0 -3 10 ;original sequence
Row 2: 2 5 3 13 ;abs value of ROW1 differences
Row 3: 3 2 10 ;abs-value of ROW2 differences
Row 4: 1 8 ;abs-value of ROW3 differences
Row 5: 7 ;abs-value of ROW4 differneces

• You are to write a program to do this, but we’ll help you with the steps.
• Your partner writes a helper function called abs-differences that takes a sentence

of numbers and returns the sentence of the absolute values of the differences of
successive elements. That is, if the inputs to abs-differences were one of the rows
above, it would return the row below it (as a sentence)

a. Fill in the blanks to complete the function last-difference which computes the last
difference of a sentence of numbers. You MAY NOT define any helper
functions, but assume abs-differences is available (5 points.)

;;INPUTS: A sentence of numbers.
;;REQUIRES: The sentence be non-empty.
;;SIDE-EFFECTS: None
;;RETURNS: The last difference number of the sentence, i.e., the results of taking the abs
value of adjacent differences over and over until one number is left.
;;EXAMPLE: (last-difference ‘(3 5 0 –3 10))

�
 7

(define (last-difference s)
 (if ___)

 __

__))

b. What pattern is last-differnece? (Circle one- 1 point.)
MAPPING FINDING COUNTIN FILTERING TESTING
 COMBINING
c. Your partner then disappears to Hawaii and takes abs-differences with her. Fill in

the blanks to complete abs-differences that takes a sentence of numbers and
returns the absolute value of the differences of successive elements.
• Feel free to use second, which returns the second item from a word or

sentence (similar to first.)
• Feel free to use abs, which returns the absolute value of a number.
• You MAY NOT define any helper functions (5 points.)

;;INPUTS: A sentence of numbers.
;;REQUIRES: The sentence has at least 2 elements.
;;SIDE-EFFECTS: None
;;RETURNS: A sentence containing the abs. value of the differences of successive
elements.
;;EXAMPLE: (last-difference ‘(3 5 0 –3 10))

�
 (2 5 3 13)

(define (abs-difference s)
 (if ___

d. As you can guess, sometimes two different sentences produce the same last-
difference. Write down two sentences that have the same last-difference of 1.
What makes this challenging is that each of the six blanks below must be filled
with a different single-digit number from 0 through 9. There may be multiple
solutions (2 points.)

 �
(last-difference ‘(___ ___ ___))

�
 1 �

(last-difference ‘(___ ___ ___))
�

 1

Take a deep breath, you’re about one-third of the way done!

Question 2: Solving a fun mystery… (13 points)
Your CS3 friend loves solving mysteries and writes the following function (for all
questions on this page, assume function arguments are evaluated left-to-right):

(define (mystery n ans)
 (if (= n 0)

 ans
 (se n (mystery (- n 1) (se ans n)))))

a. Is mystery TAIL or EMBEDDED recursion? Circle one (1 point.)

a. TAIL
b. EMBEDDED

b. What does (mystery 1 ‘cal) return? If this is an error, say what the error is. If it is
an infinite loop, write “it never returns” (1 point).

__

c. What does (mystery 2 ‘cal) return? If this is an error, say what the error is. If it is
an infinite loop, write “it never returns” (1 point).

__

d. What does the following expression return? If this is an error, say what the error
is. If it is an infinite loop, write “it never returns” (6 points).

__

e. Provide values for the blanks which cause mystery to return the values listed. If it
is impossible, circle the word IMPOSSIBLE on the far right (4 points).
> (count (mystery ___ ___))

�
 6 IMPOSSIBLE

> (mystery ___ ‘cal)
�

 goes into an infinite loop. IMPOSSIBLE
> (/ 5 0)

�
 ERROR! Division by zero.

> (mystery ___ (/ 5 0))
�

 goes into an infinite loop. IMPOSSIBLE

(turn the page for question 3)

Question 3: The students +ed and +ed like rabbits… (13 points)
We are going to look at the function multiply-then-add, a procedure that takes
three arguments a, b, and cand multiples the first two and then adds the third. The
catch is that YOU MAY NOT USE * OR / from scheme! Here are the specs:

;;INPUTS: Numbers a, b, and c
;;REQUIRES: a, b, and c are not negative.
;;SIDE-EFFECTS: none
;;RETURNS: The same thing that (+ (* a b) c) does
;;EXAMPLE: (multiply-then-add 3 4 100)

�
 112. (3 * 4) + 100 = 112.

a. Write a version of multiply-then-add using EMBEDDED recursion, without

using * or /. You MAY NOT define any helper functions. (6 points)

b. Write a version of multiply-then-add using TAIL recursion, without using *
or /. You MAY NOT define any helper functions (6 points).

c. Take a look at your EMBEDDED solution in (A) above. It might be that the
restrictions we placed on the inputs in the REQUIRES section were too strict.
IF you think the earlier REQUIRES section was fine, circle it above and
leave the box below blank. Otherwise, cross it off and write a new
REQUIRES section based on your (A) solution below.

;;REQUIRES:

(define (multiply-then-add a b c)

(define (multiple-then-add a b c)

CS 3, MIDTERM #2
Professor Dan Garcia

Fall Semester 2002
PART II given 22 October 2002.

Exam topic: Recursion

THIS IS PART 2 (TWO) OF THE EXAM, THE COMPUTER PART

For this exam, pretend you know nothing about higher-order functions or lambda.
You are to use only recursion here.

THE SETUP Log in to the computer in front of you and type: quiz. Emacs will open up
with some buggy code in oen buffer and stk in another. You are welcome to use this to
help answer these questions; you may not run other programs, send mail, etc. You may
find it faster to finish it all on paper first, then use stk to check your work.

THE STORY (there is a fair bit of reading to set up the question, but don’t despair- the
questions on the other side of this page don’t require much writing to answer)

Throughout the semester you have been asked to choose different partners for your
homework and labs. As you can imagine, it’s hard for the TAs to keep track of all these
partnerships. It would be very handy to have a function that takes a sentence of the first
names of everyone in section and returns a sentence of all the possible student
partnerships that could ever result (by concatenating the partner names together with a
dash in-between.) For example, if ana an dan were chosen to be partners, we would
represent that partnership as ana-dan. You may assume that you can never be partners
with yourself and that all student names in the class are unique.

Sometimes, however, there are some limitations as to who an be paired with whom. For
example, the TA might only want partnerships from students who live in separate dorms,
or from students who were the same age, or who had vastly different heights, etc. If two
students can be paired together, we’ll cal them “good” partners.

To help with this process, we are going to write a function called all-good-partners,
which takes two arguments:

• good-partners? –a predicate which takes two student names and returns #t if and
only if the students are good partners according to the partner restrictions.

• students- a sentence with the first names of all the students in the section.

all-good-partners should return a sentence (whose order doesn’t matter) of the good
partners’ names concatenated together. Each potential partnership should be listed once
and only once. I.e. it doesn’t make sense to list both ana-dan and dan-ana.

For example, let’s say all students in the section were named ana, bo, che, dan, and ed,
and the TA mandates that all students partnerships be between students whose names
were the same length. Furthermore, let’s say someone wrote the predicate same-name-
length? which returns #t if and only if the two names are the same length (#f otherwise.)
Then (all-good-partners same-name-length? ‘(ana bo che dan ed)) would return (ana-che
ana-dan che-dan bo-ed) in any order. Note that the other potential partnerships, ana-bo,
ana-ed, bo-che, bo-dan, che-ed and dan-ed are not ‘good’ and would not be included
because their names have different lengths.

THE QUESTIONS
We’re going to write all-good-partners by first debugging its helper function, called pair-
with-others (below we have changed A SINGLE LINE) from a perfect, working version
of the function). pair-with-others takes four arguments:

• good-partners? (the predicate mentioned earlier.)
• person (a particular student’s name as a word)
• others (the sentence of remaining potential student partners), and
• answer (the current answer so far)

and returns a sentence of all the good partnerships involving person. For example:

> (pair-with-others same-name-length? ‘bo ‘(che dan ed) ‘())

�
 (bo-ed)

(define (make-partners student-a student-b) ;;helper function
 (word student-a ‘- ‘student-b))

(define (pair-with-others good-partners? person others answer)

(cond ((empty? others) answers);; line1
((good-partners? person (first others));; line 2
 (pair-with-others good-partners? ;; line 3
 person ;; line 4
 (bf others) ;; line 5
 se (make-partners person (first others))))) ;;line 6
(else
 (pair-with-others good-partners? ;; line 7
 person ;; line 8
 (bf others) ;; line 9
 answer)))) ;; line 10

a. Why is pair-others buggy? Fill in the blanks for the bug that applies and provide the
simplest yourname input that makes the statement correct and triggers only that bug.
Then change only one line to fix the error. (Simplest = fewest students in the ‘others’
input sentence; yourname = you must supply your own names for the input students. You
may not use ana, bo, che, dan, or ed. Be creative.) You might find it handy to write
same-name-length? for online testing. (4 points)

It rejects good partnerships (when it shouldn’t.) E.g., (pair-with-others same-name-length? _____ _____ ‘())
returns ________________________ when it should return ______________________________

It accepts bad partnerships (when it shouldn’t.) E.g., (pair-with-others same-name-length? _____ _____ ‘())
returns ________________________ when it should return ______________________________

It can go into an infinite loop (when it shouldn’t. E.g., (pair-with-others same-name-length? _____ _____ ‘())
returns ________________________ when it should return ______________________________

“Replacing line _____ with __
will fix the bug so that pair-with-others works correctly on all input”.

(define (all-good-partners good-partners? students)
 (if (empty? students) ;;line 1
 ‘() ;;line 2
 (se (pair-with-others good partners? (first students) students ‘()) ;;line 3
 (all-good-partners good-partners? (bf students))))) ;;line 4

b. Above you see all-good-partners. As before, we have changed only a
single line from the perfect working version to introduce a bug. Complete
the statement below with the simplest surname input that triggers the bug
(simplest = fewest people in the ‘students’ input sentence, yourname= you
must supply your own name for the students. You may not use ana, bo,
che, dan, or ed. Be creative.) If you wish, experiment with your online
version of all-good-partners (4 points).

c. Let’s say your TA doesn’t care about the silly rules which restrict
partnerships. Using all-good-partners, write all-partners which returns all
possible partners without restrictions. For example:

> (all-partners ‘(ana bo che dan ed))

�

(ana-bo ana-che ana-dan ana-ed bo-che bo-dan bo-ed che-dan che-ed dan-ed)

The partners can be in any order in the sentence. You may write a one-line helper
function if you need it. (2 points)

(all-good-partners same-name-length? __)
returns _______________________________________ when it should return
___. Replacing line ________ with
___ will fix the bug so
that all-good-partners works correctly on all input.

(define (all-partners students)
 ___)

;;Below you may write a one-line helper function if you need…

(define (____________________) ___)

