
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2002 Instructor: Dan Garcia 2002-12-17

CS3 Final Exam
Last name____________________________ First name __________________________

SID Number__________________________ TA’s name __________________________

(Sorry to ask this next question, but with 200+ students, there may be a wide range of behavior.)

The name of the student to my left is __

The name of the student to my right is __

I certify that my answers are all my own work. I certify that I shall not discuss the
exam with anyone in CS3 who has yet to take it until after the exam time.

Signature ___

Instructions
• Question 0: Fill in this front page and write

your name on the front of every page! The
exam is open book and open notes (no
computers). Put all answers on these pages;
don’t hand in any stray pieces of paper.

• You may NOT write any auxiliary

functions for a problem unless they are
specifically allowed in the question.

• Feel free to use any Scheme function that

was described in sections of the textbook we
have read without defining it yourself.

• You do not need to write comments for

functions you write unless you think the
grader will not understand what you are
trying to do otherwise.

• You have three hours, so relax. We estimate

30 minutes per question.

• Each question is worth the same amount, so

don’t spend all your time on one problem; if
you’re stuck, move on.

• Feel free to write λ instead of lambda.

• Feel free to write any comments you wish in

the margins of this front page. Good skill!

Grading Results

Question
Max.

Points
Points
Given

0 0 / -1

1 20

2 20

3 20

4 20

5 20

6 20

Total 120

 Page 2 of 8

Question 1 – This Blankety blank blank exam… (20 pts, 3 pts each; 30 min)
(If you get every question on this page correct, you earn one bonus point)

Fill in the blanks below. The symbol “” means “evaluates to”.

• If any of the following display an error, write “ERROR” & describe the error.
• If any of the following go into an infinite loop, write “INFINITE LOOP”.
• If any of the following are impossible, write “IMPOSSIBLE”.
• If any of the return values are procedures, write <PROCEDURE name>

(e.g., cons  <PROCEDURE cons>)

a) (butfirst (butlast (se '(this) 'is '(easy))))  _________________________

b) (cdadr __)  ()

c) (cdadr ___)  cs3

d) (define foo (lambda (arg) arg))
(filter foo (list “” 'if '() #f not #t))  ______________________________

e) (equal? / (reduce __________________________________ (list + / * -)))  #t

f) (define (1+ n) (+ 1 n))
(define (bar n) ((repeated 1+ n) n))
(every bar '(1 2 3))  __

g) (define (double x) (* 2 x)) ;; Fill in nothing but parens in the parens blanks
(define mystery ;; to complete an expression that evaluates
 (lambda (x) ;; to the number in the must be a number blank
 (lambda (g)
 (g (g x)))))

___ mystery ___ mystery ___ 2 ___ double ___ double ___  _________
parens parens parens parens parens parens must be a number

Colleen Lewis
Text Box
(is)

Colleen Lewis
Text Box
'(() (a))

Colleen Lewis
Text Box
impossible

Colleen Lewis
Text Box
("" if () not #t)

Colleen Lewis
Text Box
(lambda (proc1 proc2)
 (if (= (proc1 9 3) 3)
 proc1
 proc2))

Colleen Lewis
Text Box
(2 4 6)

Colleen Lewis
Text Box
((

Colleen Lewis
Text Box
((

Colleen Lewis
Text Box
)

Colleen Lewis
Text Box
))

Colleen Lewis
Text Box
)

Colleen Lewis
Text Box
32

Name: ______________________________________

 Page 3 of 8

Question 2 – Anyone up for a game of checkers?… (20 points; 30 min)

Let’s design a fractal “checker” whose base (n=0) case is a filled square, and whose
recursive case places three half-sized copies of the previous generation in the
Northwest (NW), Northeast (NE) and Southwest (SW) corners. For example, here
are the n=0 and n=1 fractals:

a) Sketch the n=2 fractal above on the right. (2 points)
b) Sketch the n=3 fractal above on the right. (3 points)
c) Fill in the blanks below to complete the definition for checker. (9 points)

(define (checker L D R U n)
 (if (= n 0)
 (draw-rectangle L D R U) ;; (draw-rectangle x1 y1 x2 y2)
 (let ((LR (/ (+ L R) 2)) ;; LR = midway between L and R
 (DU (/ (+ D U) 2))) ;; DU = midway between D and U

 ________________________________ ;; you may not need every blank…

)))

d) The fractal (checker L D R U 100) looks like a Sierpinski triangle rotated 45º!
Let’s say you forgot to write your Northwest (NW) recursive call in part (c)
above. Roughly sketch what (checker L D R U 100) would look like below. (6
points)

L R
D

U
n=0

L R
D

U
n=1

L R
D

U
n=3

DU

LR

x

y

DU

L R
D

U
n=2

LR

DU

LR

(NW)

(SW)

(NE)

 A Sierpinski triangle rotated 45º is
the fractal (checker L D R U 100)

with the NW recursive call.

Sketch your answer above for
the fractal (checker L D R U 100)
 without the NW recursive call.

DU

L R
D

U
n=100

LR

DU

L R
D

U
n=100

LR

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Pencil

Colleen Lewis
Text Box
 (checker L D LR DU (- n 1))
 (checker L DU LR U (- n 1))
 (checker LR DU R U (- n 1))

Colleen Lewis
Line

Question for – (Get it?) (20 pts; 30 min.)
This problem concerns the definition and use of a new higher-order function called for.
Similar to for-each, it allows us to repeatedly evaluate a unary procedure f (of i, say),
but each time i increases (by some INCR procedure) from FROM up through (and
including, if it is equal to) the bigger TO. When it’s done incrementing (i > TO), for
should return done.
We’ll circle the return value for this problem to differentiate return value from display.

;; (for FROM TO INCR F)
;; INPUTS : FROM (A number)
;; : TO (A number)
;; : INCR (A unary procedure which takes an input number and returns
;; : another number hopefully closer to TO than the input)
;; : F (A unary procedure which gets invoked upon every iteration
;; : as we use INCR to increase the number until > than TO)
;; RETURNS : done
;; EXAMPLES :
;; (define (1+ x) (+ x 1)) ;; example INCR procedure
;; (define (5+ x) (+ x 5)) ;; example INCR procedure
;; (for 1 9 1+ display)  123456789done
;; 123456789 were displayed, done was returned
;; (for 1 9 5+ display)  16done
;; 16 were displayed, done was returned. Since 1 <= 9, (f 1) = (display 1)
;; called, then (incr 1) = (5+ 1) = 6, and since 6 <= 9, (f 6) = (display 6)
;; called, then (incr 6) = (5+ 6) = 11, and since 11 > 9 we return done.

a) Write for. You may not define any helper functions. (6 points)

(define (for FROM TO INCR F)
 (if ___
 'done
 ___))

b) What’s the result? Show the display & circle the return value (as above). (4 pts)
You should be able to do this question and part (c) below without part (a) above.

(define (square x) (* x x))
(define (silly i)
 (display (word 'cal i))
 'is
 (+ i 1))

(for 2 4 square silly)  __

c) Your are given (draw-1×1-square x y) which draws a 1×1 square on the screen
at coordinates (x,y). Use for to create a single expression (without defining
any new helper functions) to create the 5×5 triangle shown below. Each 1×1
square should be drawn once and only once, and by simply changing the 5 to
100 in the let your expression should draw a 100×100 triangle. (10 points)

(let ((size 5))
 (for ___

 ___)
 (you may not need all these lines) 1 2 3 4 5

1
2
3
4
5

Colleen Lewis
Text Box
(>= FROM TO)
'done
(begin (F FROM) (for (INCR FROM) TO INCR F))

Colleen Lewis
Text Box
cal2done

Colleen Lewis
Text Box
1 ;; from
(+ 1 size) ;; to
(lambda (x) (+ 1 x) ;; increment
(lambda (n-val-1) ;; F
 (for
 n-val-1 ;; from
 (+ 1 size) ;; to
 (lambda (y) (+ 1 y) ;; increment
 (lambda (n-val-2) (draw-1x1-square n-val-1 n-val-2))))))) ;; F

Name: ______________________________________

 Page 7 of 8

Question 5 – At Harvard, it’s caaaaaar and cdr… (20 pts; 30 min.)
We all recall fondly the short-cut C_R functions that start with C, have some number
of a’s and d’s and end with R that are used for walking down a complex list. E.g.,
(cadar '((1 2) (3 4))) ==> 2 Let’s assume that there is no limit to the number of a’s
and d’s one can use between the C and the R (normally the maximum number is 4).

You are to help us debug the function C_R which takes an element ELT (not a list) and
list L and returns the word of a’s and d’s that would have had to be used between the
“C” and the “R” to extract ELT from the list L. If ELT is not in the list L, C_R should return
#f.
You are told ELT is either in there exactly once or not at all. E.g.,

(C_R 2 '((1 2) (3 4)))  ada ;; (cADAr '((1 2) (3 4)))  2
(C_R 'e '(a b c d e f))  adddd ;; (cADDDDr '(a b c d e f))  e
(C_R 'stanford '(big game champ))  #f ;; stanford not in the list…

;; Assume null? has been implemented as: (define (null? arg) (equal? arg '()))

(define (C_R elt L)
 (cond ((null? L) ;; 1 done?
 #f) ;; 2
 ((equal? elt (car L)) ;; 3 is elt the car?
 'a) ;; 4
 ((C_R elt (car L)) ;; 5 is elt in the car?
 (word (C_R elt (car L)) 'a)) ;; 6
 ((C_R elt (cdr L)) ;; 7 is elt in the cdr?
 (word 'd (C_R elt (cdr L)))) ;; 8
 (else #f))) ;; 9 nope, then false

a) Fill in the blanks below to complete the sentence.
The first blank should contain the shortest length list possible. (10 points)

“Calling (C_R 'x _______________________) causes (fill in description of error)

‘ERROR! ________________________’ when it should return _________________.

Replacing line ____ with ___

fixes the error.”

b) After you make the change in (a) there is still one remaining logical bug. Fill in
the blanks below to complete the sentence. The first blank should contain the
shortest length list possible. After the fix the program should work as advertised.
(10 pts)

“Calling (C_R 'x _____________________) returns ________________________”

when it should return ___.

Replacing line ____ with ___

fixes the error.”

Colleen Lewis
Text Box
'(a)

Colleen Lewis
Text Box
#F

Colleen Lewis
Text Box
car: wrong type of arg: a

Colleen Lewis
Text Box
1

Colleen Lewis
Text Box
(cond ((or (null? L) (not (list? L)))

Colleen Lewis
Text Box
1

Colleen Lewis
Text Box
(word (C_R elt (cdr L)) 'd)

Colleen Lewis
Text Box
'(a x)

Colleen Lewis
Text Box
ad

Colleen Lewis
Text Box
da

Question 6 – A greatvalue-added question… (20 pts; 30 min.)
This question deals with your project and game theoretic values for positions:
(win=w, tie=t, lose=l). For now, we will deal only with non-loopy games (i.e., games
which never have repeat positions that could cause the game to end in a draw) with
the players alternating turns. Do NOT use the tree abstraction for this
problem.
As a reminder:

• A winning position is one with at least one losing child
• A tieing position is one with no losing children but at least one tie child
• A losing position is one with all winning children

As a reference, here are the brief specs for the three most important functions:

• (primitive-position pos)  w, l or t if pos is primitive (end of game), else #f
• (do-move pos move)  A new position, the result of making that move at that pos
• (generate-moves pos)  A list of all the moves available at pos

Write value which should return the game’s value as the letters w, l or t.
It should work for ANY non-loopy game with players alternating turns!!
You may not write any helper functions; just fill in the blanks below. (20 points)

;; INPUTS : pos (The representation of a position of the game)
;; REQUIRES : (1) primitive-position, do-move and generate-moves
;; : already defined for the particular game.
;; : (2) pos must be a valid position
;; : (3) The game cannot be loopy
;; : (4) Players must alternate moves
;; RETURNS : w, l or t (depending on the computed value of the game)
;; EXAMPLES : Assuming primitive-position, do-move & generate-moves for
;; : the game “1,2,…,10”: (value ‘(l 0))  w

(define (value pos)

 (if ___

 (let ((child-values __

 __))

 (cond ((________________________________) ____________) ;; case 1

 ((________________________________) ____________) ;; case 2

 (else _______________________________________))))) ;; case 3

You’re done! happy holiday!

Colleen Lewis
Text Box
(primative-position pos)
(primative-position pos) ;; return W L or T

Colleen Lewis
Text Box
(map (lambda (move)
 (value (do-move pos move))) (generate-moves pos)))

Colleen Lewis
Text Box
member? 'L child-values

Colleen Lewis
Text Box
member? 'T child-values

Colleen Lewis
Text Box
'W

Colleen Lewis
Text Box
'T

Colleen Lewis
Text Box
'L

