
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2000 Instructor: Dan Garcia 2000-12-15

CS 3 Final Exam
Last name____________________________ First name __________________________

SID Number__________________________ TAs name ___________________________

(Sorry to ask this next question, but with almost 375 students, there may be a wide range of behavior.)

The student on my left is ___

The student on my right is ___

I certify that my answers are all my own work. I certify that I shall not discuss the
exam questions or answers with anyone in CS3 who has yet to take it until after the
scheduled exam time.

Signature ___

Instructions
• Please write your name on every page! The

exam is open book and open notes (no
computers). Put all answers on these pages;
don’t hand in any stray pieces of paper.

• You may always write auxiliary functions

for a problem unless they are specifically
prohibited in the question.

• Feel free to use any Scheme function that

was described in sections of the textbook we
have read without defining it yourself.

• You do not need to write comments for

functions you write unless you think the
grader will not understand what you are
trying to do otherwise.

• Do every question, as we will not be

dropping your lowest-scoring one.

• You have three hours, so relax. We have

indicated how long you should take for each
question at the top of every page.

• Good skill!

Grading Results

Question
Max.

Points
Points
Given

1 20

2 20

3 20

4 20

5 20

6 20

7 20

Total 140

Name: ______________________________________

Page 2 of 9

Question 1 – Iʼm drawing a blank… (20 points, 2 points each; 20 minutes)
Fill in the blanks below. When you see the symbol “”, this means you should write
down what the interpreter would return if the expression were typed in. If any of
the following display an error, write down what the error is.

a) (cdr (cons ‘() ‘())) ___.

b) (map reverse ‘((a) (b) (c))) ___.

c) (map – ‘(4 5 6) 3) __.

d) (equal? (quote (1)) (list (1))) ______________________________________.

;; For parts e-g
(define (mystery L)
 (cond ((null? L) #t)
 ((list? (car L)) #f)
 (else (mystery (cdr L)))))

e) mystery is a type of __ recursion.

f) (mystery ‘(a (b) c)) ___.

g) A good name for mystery would be ___.

;; For parts h-i
;; wackawacka is not defined anywhere
(define (broken L)
 (wackawacka L))

h) Does entering the above definition into scheme result in an error? ___________.

i) (if ‘f (broken (/ 1 0)) 3) __.

j) The Turing test is a test of ___.

Colleen Lewis
Typewritten Text
() ;; which is an empty list

Colleen Lewis
Typewritten Text
((a) (b) (c))

Colleen Lewis
Typewritten Text
Error - mal formed list 3

Colleen Lewis
Typewritten Text
Error - l not a procedure (list (l))

Colleen Lewis
Typewritten Text
Tail

Colleen Lewis
Typewritten Text
#F

Colleen Lewis
Typewritten Text
flat-list?

Colleen Lewis
Typewritten Text
No

Colleen Lewis
Typewritten Text
Error - Can't divide 1 by 0

Colleen Lewis
Line

Name: ______________________________________

Page 3 of 9

Question 2 – Ready, set, code! (20 points; 25 minutes)
Assume for this problem that sets and lists only contain numbers. You want to
write a function pretty-print that prints either a set or a linear list to the user:

(define (pretty-print set-or-list)
 (cond ((set? set-or-list)
 (display "Your set is: ") (display (set-contents set-or-list)))
 (else
 (display "Your list is: ") (display set-or-list))))

(define (set-contents set) set)

The problem is how do we write the set? predicate? Lists and sets look the same!
Therefore, we are going to create a new representation for sets (called a new-set).
While we are doing that, we might as well keep track of the set’s cardinality, or
number of elements in the set. The new representation will be a three-element list,
whose first element is the symbol set, the second element is the cardinality, & the
third element is the set’s contents. I.e., new-set = (set cardinality contents).
Thus, a set containing the numbers 1, 4, 9, 16, and 25 could be represented as
(set 5 (16 4 9 25 1)). *null-new-set* is defined as (set 0 ()). We also need to
redefine set-contents as follows:(define (set-contents new-set) (third new-set))

We need to write set?, and realize that since lists can only contain numbers, all we
have to do is to test is if the first element is the symbol set. Our first attempt is the
following: (define (set? new-set-or-list) (= (first new-set-or-list) set))

a) Notice that set? has at least one error. Write it correctly below. (6 points)

(define (set? new-set-or-list) ;; Returns #t for new-sets and #f for lists

b) Since the format of sets have changed, we now need to rewrite new-set-adjoin.

Feel free to use any of the new-set- functions on this page. (14 points)

;; Here are some more new-set functions
(define (new-set-null? new-set) (equal? new-set *null-new-set*))
(define (new-set-member elt new-set) (member elt (set-contents new-set)))
(define (new-set-length new-set) (second new-set))

(define (new-set-adjoin elt new-set)

Colleen Lewis
Typewritten Text
(equal? (car new-set-or-list) 'set))

Colleen Lewis
Typewritten Text
(if (new-set-member elt new-set) new-set ;; assuming you don't want to add if already there. (list 'set (+ (new-set-length new-set) 1) (cons elt (set-contents new-set)))))

Name: ______________________________________

Page 4 of 9

Question 3 – set in treeʼs clothing (20 points; 20 minutes)
Now something else has cropped up. Recall the general definitions for trees:

 (define (root tree) (first tree))
 (define (left tree) (second tree))
 (define (right tree) (third tree))
 (define (leaf? tree) (atom? tree))
 (define (make-tree root left right)
 (list root left right))

A tree is an atom or a list with three items in it, the root and the two subtrees.
We saw expression trees and value trees, which were two particular examples of
trees, but not necessarily all the valid trees that exist. Since new-sets are now lists
of three items, they could possibly be confused with trees.

a) For this part, assume that a new-set can contain only positive integers (I.e., 1, 2,

3, etc.). Write an expression using only new-set-adjoin and *null-new-set* that
returns a new set which is also a valid tree. Use values that insure that it will
have the smallest sum of its set elements. Warning: be sure to re-read your
answer several times to make sure it’s correct. (10 points)

b) Draw the corresponding tree. (10 points)

Colleen Lewis
Line

Colleen Lewis
Line

Name: ______________________________________

Page 5 of 9

Question 4 – Dick Trace-me (20 points; 25 minutes)

Someone writes the strange program foo:

(define (foo n)
 (cond ((= n 0) 'done)
 (else
 (display (list 'l n)) ;; left
 (foo (- n 1))
 (display (list 'm n)) ;; middle
 (foo (- n 1))
 (display (list 'r n)) ;; right
 (newline)
 'this-was-hard)))

a) A call to (foo 1) displays a line & returns a value as shown below (we left the

return value blank). Fill in the blank with the return value. (4 points)

: (foo 1)
(l 1)(m 1)(r 1)

b) What is displayed and returned when you call (foo 2)? (12 points)

: (foo 2)

Note above that (foo 1) displayed 3 pairs: (l 1), (m 1) and (r 1).

c) How many pairs will be displayed for (foo 3)? (4 points) ____________________

Colleen Lewis
Typewritten Text
this-was-hard

Colleen Lewis
Typewritten Text
(l 2) (l 1) (m 1) (r 1)(m 2) (l 1) (m 1) (r 1)(r 2)this-was-hard

Colleen Lewis
Typewritten Text
21

Name: ______________________________________

Page 6 of 9

Put down your pen or pencil, stretch, take a deep breath, and proceed…

If you followed our suggested pace, you should have 90 min left and be half done.

Name: ______________________________________

Page 7 of 9

Question 5 – Did you accumulate CS3 knowledge? (20 points; 30 min.)
For parts (a) & (b), you may not need all the blank lines provided, and that’s ok.

a) Provide a call to the HOF all? (that returns true if all of the elements in the

second argument satisfy the first argument predicate function) which will return
#t if all of the numbers in the huge list of numbers *big-number-list* are
greater than 3. E.g., if *big-number-list* contained (7 9 5), your call should
return #t. Do not use any auxiliary function. (5 points)

(all?

 big-number-list)

(define (hour-part time-list) (first time-list))
(define (minute-part time-list) (second time-list))

(define (minutes-in-day time-list)
 (+ (* (hour-part time-list) 60) (minute-part time-list)))

(define (time-parked time-in time-out)
 (- (minutes-in-day time-out) (minutes-in-day time-in)))

(define (parking-charge time-in time-out)
 (* (truncate (/ (+ (time-parked time-in time-out) 19) 20)) 0.25))

b) You have seen how powerful accumulate is; it can be used to sort or find the

smallest element in a list. You believe it is underutilized, and want to prove that
(like a Swiss-army knife) there are many more uses for it. Fill in the blanks in
my-count-if which, like count-if, will count the number of elements in the linear
list L that satisfy pred?. You may assume L has at least two elements. Do not call
any auxiliary functions. We consider this a hard question; you are more than
welcome to skip this part for now and come back to it later in the exam. (15
points)

(define (my-count-if pred? L)
 (accumulate

 (cons 0 L)))

Colleen Lewis
Typewritten Text
(lambda (x) (> x 3))

Colleen Lewis
Text Box
Note - we don't think you've seen the predicate all? this semester - but the description of all? above should give you most of what you need to solve the problem.

Colleen Lewis
Typewritten Text
(lambda (elm count) (if (pred? elm) (+ 1 count) count))

Colleen Lewis
Text Box
(reduce ;; change in the problem

Colleen Lewis
Text Box
(append L (list 0)))) ;; change in the problem

Name: ______________________________________

Page 8 of 9

Question 6 – Listen to what the flower people say (20 points; 30 min.)

You come up with an idea for a cool fractal flower. The idea is to start with a stem
(as in Figure 1) which is a line from the bottom center of the window to the middle.
Then make a left and right turn and recurse. Figure 3 shows what happens when
you do this a couple of times. We’ve provided draw-half-line:

;; Draw a line from (x1,y1) halfway to (x2,y2) as in Figure 4
(define (draw-half-line x1 y1 x2 y2)
 (position-pen x1 y1)
 (draw-line-to (/ (+ x1 x2) 2) (/ (+ y1 y2) 2)))

a) Fill in the blanks to complete the flower procedure below. Use Figure 4 to help

you understand the temporary variables xm, ym, xL, yL, xR and yR. (15 points)

(define (flower x1 y1 x2 y2 n)
 (if (= n 0)
 (draw-half-line x1 y1 x2 y2)
 (let ((xm (/ (+ x1 x2) 2))
 (ym (/ (+ y1 y2) 2))
 (xL (/ (- (+ x2 x1 y1) y2) 2)) ;; Do NOT worry about how we
 (yL (/ (- (+ x2 y1 y2) x1) 2)) ;; calculated xL,yL,xR or yR
 (xR (/ (- (+ x2 x1 y2) y1) 2)) ;;
 (yR (/ (- (+ x1 y1 y2) x2) 2))) ;; Simply look at Figure 4

 ___)))

b) What was the value of n that generated Figure 3? (3 points) ___________

c) Modify Figure 3 to show the result of the next generation of flower (i.e., with n

one larger than the correct answer to part (b) above). (2 points)

(x1,y1)

(xm,ym)

n = 0 n = 1 n = ?

(x2,y2)

(xL,yL) (xR,yR)

Figure 2 Figure 4 Figure 1 Figure 3

Colleen Lewis
Typewritten Text
(begin (draw-half-line x1 y1 x2 y2) (flower xm ym xL yL (- n 1)) (flower xm ym xR yR (- n 1))

Colleen Lewis
Line

Colleen Lewis
Line

Colleen Lewis
Line

Colleen Lewis
Line

Colleen Lewis
Line

Colleen Lewis
Line

Colleen Lewis
Line

Colleen Lewis
Line

Colleen Lewis
Typewritten Text
3

Colleen Lewis
Text Box
(draw-line x1 y1 (/ (+ x1 x2) 2) (/ (+ y1 y2) 2)));; how we draw a line in 2008 is a little different than in 2000

Name: ______________________________________

Page 9 of 9

Question 7 – Getting back at mom (20 points; 30 minutes)

Computer scientists (and most of our moms) always seem interested in sorting
things (like lists) and returning them to their proper place. You want to rebel and
unsort things (like throwing all your clothes on the floor). Someone suggests
writing unsort, a procedure which takes a list of unique elements and returns the
same list with all of its elements rearranged in a random order. E.g.,

: (unsort ‘(a b c d)) (b d c a)
: (unsort ‘(a b c d)) (d b a c)

a) Fill in the blanks to complete the unsort procedure below. You may not use any

auxiliary functions, & your solution may not exceed two lines. (10 points)

(define (unsort L)
 (if (null? L) ;; If L is null, just return it
 L

 ___))

(define (hour-part time-list) (first time-list))
(define (minute-part time-list) (second time-list))

(define (minutes-in-day time-list)
 (+ (* (hour-part time-list) 60) (minute-part time-list)))

(define (time-parked time-in time-out)
 (- (minutes-in-day time-out) (minutes-in-day time-in)))

(define (parking-charge time-in time-out)
 (* (truncate (/ (+ (time-parked time-in time-out) 19) 20)) 0.25))

b) Your “friend” from Stanford types the following into your scheme interpreter: :

(define let ‘stanford-is-great)
: (define let* ‘we-won-the-big-game)
…which has the effect of redefining (and rendering unusable) let and let*. You
are now asked rewrite unsort given that you cannot use these special forms. Fill
in the blanks to complete the unsort procedure below. The solution does not
require any auxiliary functions. However, if you do choose to use an auxiliary
function, you will lose 5 points. Do not use set! or a define within a define. We
consider this the hardest question on the exam. (10 points)

(define (unsort L)
 (if (null? L) ;; If L is null, just return it
 L

 ___))

;; If you need a small auxiliary function, write it below.

You’re done!!! Have a great winter break!

Colleen Lewis
Typewritten Text
(let ((elm (list-ref L (random (length L)))))(cons elm (unsort (filter (lambda (x)(not (equal? x elm))) L))))

Colleen Lewis
Typewritten Text
((lambda (elm) (cons elm (unsort (filter (lambda (x)(not (equal? x elm)) L)))) (list-ref L (random (length L))))

