
CS188 Intro to AISpring 1993 Stuart Russell Final solutions1. (12 pts.) De�nitions Provide brief, precise de�nitions of the following:(a) Turing test: a test designed to indicate whether or not a system can be said to be intelligent. If a computeris approximately indistinguishable from a human when interrogated over a terminal, it passes.(b) Uni�er: a substitution for the variables in two atomic sentences that makes them identical.(c) Coercible world: a world that can be forced into a known state even if it can't be sensed.(d) Partial-order planner: a planner that entertains plan descriptions containing steps that need not be orderedwith respect to each other.(e) Singly-connected network: a belief network in which every pair of nodes are connected by at most onedirected path.(f) Perceptron: a \one-layer" neural network: the inputs nodes are connected directly to output nodes withno hidden units.2. (20 pts.) Logical InferenceFrom \Horses are animals", it follows that \The head of a horse is the head of an animal". Demonstrate thatthis inference is valid by carrying out the following steps:(a) (6) Translate the premise and the conclusion into the language of �rst-order logic. Use three predicates:� Head-of(x; y): x is the head of y.� Horse(x): x is a horse.� Animal(x): x is an animal.8x(Horse(x)! Animal(x))8x8y(Horse(y) ^ Head-of(x; y)! 9z(Animal(z) ^ Head-of(x; z)))(b) (7) Negate the conclusion, and convert the premise and the negated conclusion into conjunctive normalform.:8x8y(Horse(y) ^ Head-of(x; y)! 9z(Animal(z) ^ Head-of(x; z))):8x8y(:(Horse(y) ^ Head-of(x; y)) _ 9z(Animal(z) ^ Head-of(x; z)))9x9y:(:(Horse(y) ^ Head-of(x; y)) _ 9z(Animal(z) ^ Head-of(x; z)))9x9y(::(Horse(y) ^ Head-of(x; y)) ^ :9z(Animal(z) ^ Head-of(x; z)))9x9y(Horse(y) ^ Head-of(x; y) ^ 8z:(Animal(z) ^ Head-of(x; z)))9x9y(Horse(y) ^ Head-of(x; y) ^ 8z(:Animal(z) _:Head-of(x; z)))9x9y8z(Horse(y) ^ Head-of(x; y) ^ (:Animal(z) _:Head-of(x; z)))8z(Horse(b) ^ Head-of(a; b) ^ (:Animal(z) _ :Head-of(a; z)))Horse(b) ^ Head-of(a; b) ^ (:Animal(z) _ :Head-of(a; z))(1) Horse(b)(2) Head-of(a; b)(3) :Animal(z) _ :Head-of(a; z)8x(Horse(x)! Animal(x))8x(:Horse(x) _ Animal(x))(4) :Horse(x) _ Animal(x)(c) (7) Use resolution to show that the conclusion follows from the premise.Resolve (1) and (4), with uni�er fx=bg, to yield1



(5) Animal(b)Resolve (3) and (5), with uni�er fz=bg, to yield(6) :Head-of(a; b)Resolve (2) and (6), with uni�er fg, to yield the empty clause.3. (17 pts.) Search in games(a) (3) The search is depth-�rst. You can follow the code and see that the recursive call to backed-up-valuedoesn't terminate until the stack reaches the depth limit. In this code, the recursion stack contains thesequence of moves and states.(b) (4) See �gure

(c) (3) See �gure 2



(d) (2) See �gure(e) (2) See �gure(f) (3)4. (16 pts.) Decision theory and the value of information(a) (3) Choose the action with the highest expected outcome utility. Outcomes occur with probabilityP (WjjAi;K), so we haveargmaxAiPj U (Wj)P (WjjAi;K)(b) (4) ii) is correct. i) is ill-formed, because the �rst Ai is not in the scope of any max or sum, and inadequatebecause the last conditional probability omits the dependence on the action. iii) reverses the order of theaveraging and summation: it essentially suggests that the choice of action will occur before the informationis known, so the whole expression will always be 0.(c) (6) If I don't peek, I win C=k on average. If I peek, I have a 1=k chance of �nding the prize, in whichcase I choose the same door and win C; I have a (k � 1)=k chance of �nding that the �rst door is empty,in which case I choose some other door (the new best action) with an expected winnings of C=(k � 1).Hence my expected total winnings are1k � C + k � 1k � Ck � 1 = 2CkThe value of information is the di�erence between this and my winnings without the peek, i.e. C=k.(d) (3) False. After the �rst peek, it would be silly to pay for a second if I happen to �nd the prize with the�rst.5. (12 pts.) Learning in agents(a) (6)i. (3) See �gureii. (3) See �gure(b) (6) Basic idea: agent should check to see if the percept contains a recommended action, If not, it calls LPon the current examples to get a function, calls the function on the percept and returns the reult of thefunction. If the percept contains an action, it stores the percept with the previous examples and returnsthe action from it.6. (15 pts.) Natural language(a) B and C. A fails because it allows either two straight adverbs (slowly slowly) or a single prepositionalphrase.(b) eg \I ran quickly from my house along a river".Pronoun ! \I"V ! \ran"Adv ! \quickly"Prep ! \from", \along"Det ! \my", \a"Noun ! \house", \river"(c) See �gure(d) i. Exhibited by B,Cii. Exhibited by B,Ciii. Exhibited by A,Civ. Exhibited by B,Cv. Exhibited by A (maybe C also)7. (18 pts.) Perception and robotics using belief networks3



(a) i) and iii) are correct. ii) has the connection from the X to O reversed, which says that the sensor valuecauses the actual position.(b) iii) is best because it has a subset of the arrows in i) but is still correct. i) has the state variables (X, V, F)fully connected to the next time step, which simply says that the current state depends on the previousstate in some arbitrary way.(c) ii)(d) If we add nodes for each future time step until we get to the desired time, then calculate the posteriorprobability of the state variables given the evidence up to the present time, we will have predicted thetrajectory.(e) Two parts: 1) Find the ball in the camera array; simply locate the region of highest intensity. This canbe done e�ciently by random sampling until closely spaced high values are found (this method is robustagainst noise in the image also). 2) Convert from image (x',y') coordinates to real coordinates (x,y,z).The easiest way to do this is to calculate the distance of the ball from the camera using its apparent size(diameter inversely proportional to distance) and the fact that the pingpong ball has a known actual size.The simple geomtery su�ces to recover x,y,z.(f) For the purposes of hitting the ball, we want relative coordinates because the arm motion is also relativeto the robot. But to decide where to hit it to, we will need absolute coordinates so it ends up on the table.What you don't want to do is calculate the ball position in absolute coordinates, calculate the robot armmotion in absolute coordinates, and subtract to get the appropriate motor commands to send to the arm.It would also be necessary to track both arm and ball continuously to make sure they meet.

4



5


