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Q1. [?? pts] Approximate Q-Learning
Consider the following MDP: We have infinitely many states s P Z and actions a P Z, each represented as an integer.
Taking action a from state s deterministically leads to new state s1 “ s ` a and reward r “ s ´ a. For example,
taking action 3 at state 1 results in new state s1 “ 1` 3 “ 4 and reward r “ 1´ 3 “ ´2.

We perform approximate Q-Learning, with features and initialized weights defined below.

Feature Initial Weight
f1ps, aq “ s w1 “ 1
f2ps, aq “ ´a

2 w2 “ 2

(a) [?? pts] Write down Qps, aq in terms of w1, w2, s, and a.

Qps, aq “ w1 ˚ s´ w2 ˚ a
2

(b) [?? pts] Calculate Qp1, 1q.

Qp1, 1q “ w1f1p1, 1q ` w2f2p1, 1q “ 1 ˚ 1´ 2 ˚ 12 “ ´1

(c) [?? pts] We observe a sample ps, a, r, s1q of p1, 1, 0, 2q. Assuming a learning rate of α “ 0.5 and discount factor
of γ “ 0.5, compute new weights after a single update of approximate Q-Learning.

diff “ p0` 0.5 ˚max
a

Qp2, aqq ´ p´1q

diff “ p0.5 max
a
p2´ 2 ˚ a2qq ` 1

diff “ p0.5p2` 2 ˚max
a
p´a2qqq ` 1

diff “ p0.5p2` 2 ˚ 0qq ` 1

diff “ 1` 1 “ 2

w1: 1` 0.5 ˚ 2 ˚ 1 “ 2

w2: 2` 0.5 ˚ 2 ˚ ´12 “ 1

(d) [?? pts] Compute the new value for Q(1,1).

Q(1,1) = w1 ˚ 1` w2 ´ 12 “ 2 ˚ 1` 1 ˚ ´12 “ 1
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Q2. [?? pts] Who Spoke When
We are given a single audio recording (divided into equal and short time slots) and wish to infer when each person
speaks. At every time step exactly one of N people is talking. This problem can be modeled using an HMM. Hidden
variable Xt P t1, 2, ..., Nu represents which person is talking at time step t.

(a) For this part, assume that at each time step:

• with probability p, the current speaker will continue to talk in the next time step.

• with probability 1 ´ p, the current speaker will be interrupted by another person. Each other person is
equally likely to be the interrupter.

Assume that N “ 3.

(i) [?? pts] Complete the Markov Chain below and write down the probabilities on each transition.

Self transitions for all states with probability p and all other transitions with probability p1´ pq{2

(ii) [?? pts] What is the stationary probability distribution of this Markov chain? (Again, assume N “ 3).

P pXinf “ 1q = 1{3

P pXinf “ 2q = 1{3

P pXinf “ 3q = 1{3
1{3 for each state, because of the symmetry.

(b) [?? pts] What is the number of parameters (or degrees of freedom) needed to model the transition probability
P pXt|Xt´1q? Assume N people in the meeting and arbitrary transition probabilities.

NpN ´ 1q P pXt|Xt´1q is N ˆN and each row should sum to one. Significant partial credit will be

given to the answer N2.

(c) [?? pts] Let’s remove the assumption that people are not allowed to talk simultaneously. Now, hidden state
Xt P t0, 1u

N will be a binary vector of length N . Each element of the vector corresponds to a person, and
whether they are speaking.

Now, what is the number of parameters (or degrees of freedom) needed for modeling the transition proba-
bility P pXt|Xt´1q?
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2N p2N ´ 1q We have 2N different states so we need 2N p2N ´ 1q or roughly 22N parameters.
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One way to decrease the parameter count is to assume independence. Assume that the transition probability between
people is independent. The figure below represents this assumption for N “ 3, where Xt “ rXtp1q, Xtp2q, Xtp3qs.

(d) [?? pts] Write the following in terms of conditional probabilities given from the Bayes Net. Assume N people
in the meeting.

Transition Probability P pXt|Xt´1q

P pXt|Xt´1q “
śN
n“1 P pXtpnq|Xt´1pnqq

Emission Probability P pYt|Xtq

P pYt|Xtq “ P pYt|Xtp1q, ¨ ¨ ¨ , XtpNqq

(e) [?? pts] What is the number of parameters (or degrees of freedom) needed for modeling transition probability
P pXt|Xt´1q? Assume N people in the meeting.

2N

We need to define a transition matrix for each person which requires 2 parameters and there are N people.
Significant partial credit for answer 4N .
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Q3. [?? pts] Naive Bayes
(a) We use a Naive Bayes classifier to differentiate between Pacmen and Ghosts, trained on the following:

F1 F2 Y
0 1 Ghost
1 0 Ghost
0 0 Pac
1 1 Pac

Assume that the distributions generated from these samples perfectly estimate the CPTs. Given features f1, f2,
we predict Ŷ P tGhost, Pacmanu using the Naive Bayes decision rule. If P pY “ Ghost|F1 “ f1, F2 “ f2q “ 0.5,
assign Ŷ based on flipping a fair coin.

(i) [?? pts] Compute the table P pŶ |Y q.

Value P pŶ “ Ghost|Y “ Ghostq is the probability of correctly classifying a Ghost,
while P pŶ “ Pacman|Y “ Ghostq is the probability of confusing a Ghost for a Pacman.

P pŶ |Y q Ŷ “ Ghost Ŷ “ Pacman

Y “ Ghost 1
2

1
2

Y “ Pacman 1
2

1
2

For each modification below, recompute table P pŶ |Y q. The modifications for each part are separate,
and do not accumulate.

(ii) [?? pts] Add extra feature F3 “ F1 ` F2, and modify the Naive Bayes classifier appropriately.

P pŶ |Y q Ŷ “ Ghost Ŷ “ Pacman

Y “ Ghost 1 0

Y “ Pacman 0 1

(iii) [?? pts] Add extra feature F3 “ F1 ˆ F2, and modify the Naive Bayes classifier appropriately.

P pŶ |Y q Ŷ “ Ghost Ŷ “ Pacman

Y “ Ghost 1 0

Y “ Pacman 1
2

1
2
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(iv) [?? pts] Add extra feature F3 “ F1 ´ F2, and modify the Naive Bayes classifier appropriately.

P pŶ |Y q Ŷ “ Ghost Ŷ “ Pacman

Y “ Ghost 1 0

Y “ Pacman 0 1

(v) [?? pts] Perform Laplace Smoothing with k “ 1.

P pŶ |Y q Ŷ “ Ghost Ŷ “ Pacman

Y “ Ghost 1
2

1
2

Y “ Pacman 1
2

1
2

(b) [?? pts] Now, we reformulate the Naive Bayes classifier so that it can choose more than one class. For example,
if we are choosing which genre a book is, we want the ability to say that a romantic comedy is both a romance
and a comedy.

To do this, we have multiple label nodes Y “ tY1...Ynu which all point to all features F “ tF1...Fmu.

Select all of the following expressions which are valid Naive Bayes classification rules, i.e., equivalent to
arg maxY1...Yn

P pY1, Y2, ..., Yn|F1, F2, ..., Fmq:

l arg max
Y1...Yn

n
ś

i

«

P pYiq
m
ś

j

P pFj |Yiq

ff

l arg max
Y1...Yn

n
ś

i

«

P pYiq
m
ś

j

P pFj |Y1...Ynq

ff

� arg max
Y1...Yn

n
ś

i

rP pYiqs
m
ś

j

rP pFj |Y1...Ynqs

l
n
ś

i

«

arg max
Yi

#

P pYiq
m
ś

j

P pFj |Yiq

+ff

l
n
ś

i

«

arg max
Yi

#

P pYiq
m
ś

j

P pFj |Y1...Ynq

+ff
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Q4. [?? pts] Tracking a cyclist
We are trying to track cyclists as they move around a self-driving car. The car is equipped with 4 “presence detectors”
corresponding to:

• Front of the car (F),

• Back of the car (B),

• Left side of the car (L),

• Right side of the car (R).

F

B

RL

Figure 1: Autonomous vehicle and detection zones

Unfortunately, the detectors are not perfect and feature the following conditional probabilities for detection D P t0, 1u
(“no detection” or “detection”, respectively) given cyclist presence C P t0, 1u (“no cyclist” or “cyclist”, respectively).

Front detector

PF pD|Cq d “ 1 d “ 0
c “ 1 0.8 0.2
c “ 0 0.1 0.9

Back detector

PBpD|Cq d “ 1 d “ 0
c “ 1 0.6 0.4
c “ 0 0.4 0.6

Left & Right detectors

PLpD|Cq “ PRpD|Cq d “ 1 d “ 0
c “ 1 0.7 0.3
c “ 0 0.2 0.8

(a) Detection and dynamics

(i) [?? pts] If you could freely choose any detector to equip all four detection zones, which one would be best?

 The front detector. # The detector at the back. # The left/right detector.

The front detector features the confusion matrix most concentrated on the diagonal.

Dynamics: We have measured the following transition probabilities for cyclists moving around the car when
driving. Assume any dynamics are Markovian. Variable Xt P tf, l, r, bu denotes the location of the cyclist at
time t, and can be in front, left, right, or back of the car.

P pXt`1|Xtq Xt`1 “ f Xt`1 “ l Xt`1 “ r Xt`1 “ b
Xt “ f pff pfl pfr pfb
Xt “ l plf pll plr plb
Xt “ r prf prl prr prb
Xt “ b pbf pbl pbr pbb

(ii) [?? pts] Which criterion does this table have to satisfy for it to be a well defined CPT? (Select all that
apply).

� Each row should sum to 1. l Each column should sum to 1. l The table should sum to 1.
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(b) Let’s assume that we have been given a sequence of observations d1, d2, . . . , dt and computed the posterior
probability P pXt|d1, d2, . . . , dtq, which we represent as a four-dimensional vector.

(i) [?? pts] What is vector P pXt`1|d1, d2, . . . , dtq as a function of P pXt`1|Xtq (a 4ˆ 4 matrix written above)
and P pXt|d1, d2, . . . , dtq?

P pXt`1|D1, D2, . . . , Dtq “ P pXt`1|Xtq
T ˆ P pXt|D1, D2, . . . , Dtq

or P pXt`1|D1, D2, . . . , Dtq “
ř

xt
P pXt`1|Xt “ xtq ˆ P pXt “ xt|D1, D2, . . . , Dtq

(ii) [?? pts] What is the computational complexity of computing P pXt|D1 “ d1, D2 “ d2, . . . , Dt “ dtq as a
function of t and the number of states S (using big O notation)?

Optˆ S2q.

Detailed solution: At each time step of the forward algorithm, we need to multiply a vector of size S by a
matrix of size S2 to account for the dynamics entailed in P pXt`1|Xtq.
Then, we need to compute the emission probability of each state which here costs 2ˆ S and normalize (com-
plexity is S). Therefore, the cost of propagating beliefs forward in time through the dynamics dominates as a
function of S and is OpS2q for each time step. Hence the final answer.

(c) (i) [?? pts] We now add a radar to the system (random variable E P tf, l, r, bu). Assuming the detection by
this device is independent from what happens with the pre-existing detectors, which of the probabilistic
models could you use? If several variables are in the same node, the node represents a tuple of random
variables, which itself is a random variable.

Xt Xt+1

Dt Et Dt+1 E t+1

Answer a)

Xt X t+1

Dt Dt+1

Answer b)

Et E t+1

Xt X t+1

Et

Dt+1

E t+1

Answer c)

Dt

Answer d)

Xt Et Dt X t+1E t+1Dt+1

Select all that apply.
�a) �b) l c) �d)

(ii) [?? pts] ERRATUM: Which of the following values for Z are correct?

P pXt`1|D1, . . . , Dt`1, E1, . . . , Et`1q “
ÿ

x“f,l,r,b

Z ¨ P pXt “ x|D1, . . . , Dt, E1, . . . , Etq ¨ P pXt`1|Xt “ xq

P pDt`1, Et`1|D1, . . . , Dt, E1, . . . , Etq
.

� Z “ P pEt`1Dt`1|Xt`1, Xt, D1, . . . , Dt`1, E1, . . . , Et`1q

� Z “ P pEt`1|Xt`1qP pDt`1|Xt`1q

l Z “ P pEt`1|XtqP pDt`1|Xtq
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l Z “ P pEt`1|EtqP pDt`1|Dtq

� Z “ P pEt`1, Dt`1|Xt`1q

l Z “ P pEt`1, Dt`1|Xtq

P pXt`1|D1, . . . , Dt`1, E1, . . . , Et`1q

“
P pXt`1, Dt`1, Et`1|D1, . . . , Dt, E1, . . . , Etq

P pDt`1, Et`1|D1, . . . , Dt, E1, . . . , Etq

“
P pDt`1, Et`1|Xt`1, D1, . . . , Dt, E1, . . . , EtqP pXt`1|D1, . . . , Dt, E1, . . . , Etq

P pDt`1, Et`1|D1, . . . , Dt, E1, . . . , Etq

“
P pDt`1|Xt`1qP pEt`1|Xt`1q

ř

x P pXt`1|Xt “ x,D1, . . . , Dt, E1, . . . , EtqP pXt “ x|D1, . . . , Dt, E1, . . . , Etq

P pDt`1, Et`1|D1, . . . , Dt, E1, . . . , Etq

“
P pDt`1|Xt`1qP pEt`1|Xt`1q

ř

x P pXt`1|Xt “ xqP pXt “ x|D1, . . . , Dt, E1, . . . , Etq

P pDt`1, Et`1|D1, . . . , Dt, E1, . . . , Etq
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Q5. [?? pts] MDP: Left or Right
Consider the following MDP:

A BT T
0

2

8

0

The state space S and action space A are
S “ tA,B, T u

A “ tleft, rightu

where T denotes the terminal state (both T states are the same). When in a terminal state, the agent has no more
action and gets no more reward. In non-terminal states, the agent can only go left or right, but their action only
succeeds (goes in the intended direction) with probability p. If their action fails, then they go the opposite direction.
The numbers on the arrows denote the reward associated with going from one state to another.

For example, at state A taking action left:

• with probability p, the next state will be T and the agent will get a reward of 8. The episode is then terminated.

• with probability 1´ p, the next state will be B and the reward will be 2.

For this problem, the discount factor γ is 1. Let π˚p be the optimal policy, which may or may not depend on the

value of p. Let Qπ
˚
p and V π

˚
p be the corresponding Q and V functions of π˚p .

(a) [?? pts] If p “ 1, what is π˚p ? (Select one)

# π˚p pAq “ left , π˚p pBq “ left

# π˚p pAq “ left , π˚p pBq “ right

 π˚p pAq “ right , π˚p pBq “ left

# π˚p pAq “ right , π˚p pBq “ right

The optimal policy just goes back and forth between A and B getting infinite points.

(b) [?? pts] If p “ 0, what is π˚p pAq? (Select one)

# π˚p pAq “ left , π˚p pBq “ left

 π˚p pAq “ left , π˚p pBq “ right

# π˚p pAq “ right , π˚p pBq “ left

# π˚p pAq “ right , π˚p pBq “ right

Since p “ 0, it’s the same as p “ 1 but you just need to take the opposite action.
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(c) [?? pts] Suppose π˚p pAq “ left. Which of the following statements must be true? (Select all that apply)

Hint: Don’t forget that if x “ y, then x ě y and x ď y.

l Qπ
˚
p pA, leftq ď Qπ

˚
p pA, rightq

� Qπ
˚
p pA, leftq ě Qπ

˚
p pA, rightq

l Qπ
˚
p pA, leftq “ Qπ

˚
p pA, rightq

l V π
˚
p pAq ď V π

˚
p pBq

� V π
˚
p pAq ě V π

˚
p pBq

l V π
˚
p pAq “ V π

˚
p pBq

� V π
˚
p pAq ď Qπ

˚
p pA, leftq

� V π
˚
p pAq ě Qπ

˚
p pA, leftq

� V π
˚
p pAq “ Qπ

˚
p pA, leftq

l V π
˚
p pAq ď Qπ

˚
p pA, rightq

� V π
˚
p pAq ě Qπ

˚
p pA, rightq

l V π
˚
p pAq “ Qπ

˚
p pA, rightq

For left to be the optimal action, it must be the case that Qπ
˚
p pA, leftq ě Qπ

˚
p pA, rightq. Therefore, we also

get that V π
˚
p pAq “ maxaQ

π˚
p pA, aq “ Qπ

˚
p pA, leftq. Also, it’s always the case that V π

˚
p pAq ě V π

˚
p pBq for

this problem.

(d) Assume p ě 0.5 below.

(i) [?? pts] V ˚pBq “ αV ˚pAq ` β. Find α and β in terms of p.

• α “ p

• β “ 0

since p ě 0.5, it’s always optimal to go left from B. So

V ˚pBq “ Q˚pB, leftq “ pp0` V ˚pAqq ` p1´ pqp0` V ˚pT qq “ pV ˚pAq

(ii) [?? pts] Qπ
˚
p pA, leftq “ αV ˚pBq ` β. Find α and β in terms of p.

• α “ 1-p

• β “ 2+6p

Qπ
˚
p pA, leftq “ pp8` V ˚pT qq ` p1´ pqp2` V ˚pBqq

“ p1´ pqV ˚pBq ` 2` 6p

(iii) [?? pts] Qπ
˚
p pA, rightq “ αV ˚pBq ` β. Find α and β in terms of p.

• α “ p

• β “ 8´ 6p

Qπ
˚
p pA, rightq “ p1´ pqp8` V ˚pT qq ` pp2` V ˚pBqq

“ pV ˚pBq ` 8´ 6p
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Q6. [?? pts] Take Actions
An agent is acting in the following gridworld MDP, with the following characteristics.

• Discount factor γ ă 1.

• Agent gets reward R ą 0 for entering the terminal state T , and 0 reward for all other transitions.

• When in terminal state T , the agent has no more action and gets no more reward.

• In non-terminal states tA,B,Cu, the agent can take an action tUp,Down,Left,Rightu.

• Assume perfect transition dynamics. For example, taking action Right at state A will always result in state C
in the next time step.

• If the agent hits an edge, it stays in the same state in the next time step. For example, after taking action
Right at C, the agent remains in state C.

B T

A C

(a) (i) [?? pts] What are all the optimal deterministic policies? Each cell should contain a single action
tUp,Down,Left,Rightu. Each row corresponds to a different optimal policy. You may not need all rows.

State A B C

Optimal policy 1 Up Right Up

Optimal policy 2 (if needed) Right Right Up

Optimal policy 3 (if needed)

(ii) [?? pts] Suppose the agent uniformly randomly chooses between the optimal policies in (i). In other
words, at each state, the agent picks randomly between the actions in the corresponding column with equal
probability. The agent’s location at each time step is then a Markov process where state Xt P tA,B,C, T u.
Fill in the following transition probabilities for the Markov process.

• P pXt`1 “ B|Xt “ Aq “ 0.5

• P pXt`1 “ A|Xt “ Bq “ 0

• P pXt`1 “ T |Xt “ Cq “ 1
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(b) Suppose the agent is acting in the same gridworld as above, but does not get to observe their exact state Xt.
Instead, the agent only observes Ot P tblack, green, pinku. The observation probability as a function of the
state P pOt|Xtq is specified in the table below. This becomes a partially-observable Markov decision process
(POMDP). The agent is equally likely to start in non-terminal states tA,B,Cu.

B

0.5, black T

0.5, green

A C

0.5, black 0.5, pink

0.5, pink 0.5, green

(i) [?? pts] If the agent can only act based on its current observation, what are all deterministic optimal
policies? You may not need all rows.

Black Green Pink

Optimal policy 1 Right Right Up

Optimal policy 2 (if needed) Right Up Up

Optimal policy 3 (if needed)

(ii) [?? pts] Suppose that the agent follows the policy πpBlackq “ Right, πpGreenq “ Right, and πpPinkq “ Up.
Let V pSq be the agent’s expected reward from state S. Your answer should be in terms of γ and R.
Note that V pSq is the expected value before we know the observation, so you must consider all possible
observations at state S.

• V(A) = γp 12R`
1
2 p

R
2´γ qq

• V(B) = R

• V(C) = R
2´γ

V pBq “ R because we always go right in state B.
V pCq “ 1

2R`
1
2γV pCq ùñ V pCq “ R

2´γ .

V pAq “γp 12V pBq `
1
2V pCqq

Now suppose that the agent’s policy can also depend on all past observations and actions. Assume that when
the agent is starting (and has no past observations), it behaves the same as the policy in the previous part:
πprBlacksq “ Right, πprGreensq “ Right, πprPinksq “ Up. In all cases where the agent has more than one
observation (for example, observed Pink in the previous time step and now observes Green), π acts optimally.

(iii) [?? pts] For each of the following sequences of two observations, write the optimal action that the policy
π would take.

Black Pink Black Green Green Pink Green Green Pink Black Pink Green

Up Up Up Up Right Right
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(iv) [?? pts] In this part only, let V pSq refer to the expected sum of discounted rewards following π if we start
from state S (and thus have no previous observations yet). As in the previous part, this is the expected
value before knowing the observation, so you must consider all possible observations at S.

Hint: since π now depends on sequences of observations, the way we act at states after the first state may
be different, and this affects the value at the first state.

• V(A) = γR

• V(B) = R

• V(C) = 1
2 p1` γqR

(c) Boba POMDP May is a venture capitalist who knows that Berkeley students love boba. She is picking
between investing in Sharetea or Asha. If she invests in the better one, she will make a profit of $1000. If she
invests in the worse one, she will make no money.

At the start, she believes both Asha and Sharetea have an equal chance of being better. However, she can pay
to have students taste test. At each time step, she can either choose to invest or to pay for a student taste
test. Each student has a p “ 0.9 probability of picking the correct place (independent of other students).

(i) [?? pts] What is the expected profit if May invests optimally after one (free) student test?

900

(ii) [?? pts] If she had to invest after one student test, what is the highest May should pay for the test?

400

(iii) [?? pts] Suppose after n student tests, it turns out that all students have chosen the same store. What is
her expected profit after after observing these n student tests?
# 1000p0.9nq
 1000p 0.9n

0.9n`0.1n q

# 1000p0.9n ´ 0.1nq
# 1000p 0.9

n
´0.1n

0.9n q

# 1000p 0.9
n
´0.1n

0.9n`0.1n q

# 1000p1´ 0.1nq

(iv) [?? pts] How many tests should May pay for if each one costs $100?

Hint: Think about the maximum possible value of information. How does this compare to the expected
value of information?

1
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Q7. [?? pts] Graph Search
You are trying to plan a road trip from city A to city B. You are given an undirected graph of roads of the entire
country, together with the distance along each road between any city X and any city Y : lengthpX,Y q (For the rest
of this question, ”shortest path” is always in terms of length, not number of edges). You would like to run a search
algorithm to find the shortest way to get from A to B (assume no ties).

Suppose C is the capital, and thus you know the shortest paths from city C to every other city, and you would like
to be able to use this information.

Let pathoptpX Ñ Y q denote the shortest path from X to Y and let costpX,Y q denote the cost of the shortest path
between cities X and Y . Let rpathpX Ñ Y q, pathpY Ñ Zqs denote the concatenation.

(a) [?? pts] Suppose the distance along any edge is 1. You decide to initialize the queue with A, plus a list of
all cities X, with pathpA Ñ Xq “ rpathoptpA Ñ Cq, pathoptpC Ñ Xqs . You run BFS with this initial queue
(sorted in order of path length). Which of the following is correct? (Select all that apply)

l You always expand the exact same nodes as you would have if you ran standard BFS.
l You might expand a different set of nodes, but still find the shortest path.
� You might expand a different set of nodes, and find the sub-optimal path.

Consider a graph of 5 nodes: A,B,C,D,E and edges (A,C), (C,E), (E,B), (A,D),(D,B). Then our initial queue (in
order) is

1. C: A-C

2. E: A-C-E

3. B: A-C-E-B

4. D: A-C-A-D

The path returned will be A-C-E-B

(b) [?? pts] You decide to initialize priority queue with A, plus a list of all cities X, with pathpA Ñ Xq “
rpathoptpAÑ Cq, pathoptpC Ñ Xqs, and costpA,Xq “ costpA,Cq ` costpC,Xq. You run UCS with this initial
priority queue. Which of the following is correct? (Select all that apply)

� You always expand the exact same nodes as you would have if you ran standard UCS.
l You might expand a different set of nodes, but still find the shortest path.
l You might expand a different set of nodes, and find the sub-optimal path.

Regardless of what is on the queue, UCS will explore nodes in order of their shortest-path distance to A, so
the set of explored nodes is always {nodes X: dist(A,X) less than dist(A,B)}
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Q8. [?? pts] Bayes Net Inference
A plate representation is useful for capturing replication in Bayes Nets. For example, Figure ??(a) is an equivalent
representation of Figure ??(b). The N in the lower right corner of the plate stands for the number of replica.

Figure 2

Now consider the Bayes Net in Figure ??. We use X1:N as shorthand for pX1, ¨ ¨ ¨ , XN q. We would like to compute
the query P pX1:N |Y1:N “ y1:N q. Assume all variables are binary.

Figure 3
(a) [?? pts] What is the number of rows in the largest factor generated by inference by enumeration, for this query?

# 22N # 23N # 22N`2  23N`2

In inference by enumeration, the full joint probability P pX1:N , Y1:N “ y1:N ,W1:N , Z1:N , A,Bq are computed,
which has size 23N`2

(b) [?? pts] Mark all of the following variable elimination orderings that are optimal for calculating the answer for
the query P pX1:N |Y1:N “ y1:N q. (A variable elimination ordering is optimal if the largest factors generated is
smallest among all possible elimination orderings).

� Z1, ¨ ¨ ¨ , ZN ,W1, ¨ ¨ ¨ ,WN , B,A
� W1, ¨ ¨ ¨ ,WN , Z1, ¨ ¨ ¨ , ZN , B,A
l A,B,W1, ¨ ¨ ¨ ,WN , Z1, ¨ ¨ ¨ , ZN
l A,B,Z1, ¨ ¨ ¨ , ZN ,W1, ¨ ¨ ¨ ,WN

The only thing that matters is the size of the maximum factor generated during elimination and the final factor
P pX1:N |y1:N q has size 2N . Eliminating anything other than A does not generate a factor which depends on
more than one time index i, so as long as A is eliminated last, no factor of size greater than 2N is generated,
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so the first two orderings are both optimal. (In fact, as long as A is eliminated before B, the ordering will be
optimal, but it was not necessary to notice this to distinguish among the given options.)

(c) [?? pts] Which of the following variables can be deleted before running variable elimination, without affecting
the inference result? Deleting a variable means not putting its CPT in our initial set of factors when starting
the algorithm.

� W1 � Z1 l A � B l None

B, W1, and Z1 can all be deleted. In general, any variable which has no descendants that are query variables
(in this case Xi) or evidence variables (in this case yi) can be deleted. This is because when we eliminate the
subgraph of all the descendants of such a variable, we will end up with a factor in which all the entries are
equal to 1 and thus does not affect the results whatsoever when joined with other factors.
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Q9. [?? pts] Deep Learning
(a) [?? pts] Data Separability

The plots above show points in feature space (x1, x2), also referred to as feature vectors x “ rx1 x2s
T .

For each of the following, we will define a function hpxq as a composition of some functions fi and gi. For each
one, consider the decision rule

ypxq “

#

ˆ hpxq ě 0

© hpxq ă 0.

Under each composition of functions h, select the datasets for which there exist some linear functions fi and
some nonlinear functions gi such that the corresponding decision rule perfectly classifies the data. (Select all
that apply)

A composition of linear functions will always be linear. Parts (i), (ii), (iv) are linear. Plot (b) is linearly
separable, and can be separated by linear or nonlinear decision boundaries. Plots (a),(c) require a nonlinear
function to perfectly separate them.

(i) hpxq “ f1pxq

(a) l (b) � (c) l

(ii) hpxq “ f2pf1pxqq

(a) l (b) � (c) l

(iii) hpxq “ f2pg1pf1pxqqq

(a) � (b) � (c) �

(iv) hpxq “ f4pf3pf2pf1pxqqqq

(a) l (b) � (c) l

(v) hpxq “ g2pg1pxqqq

(a) � (b) � (c) �
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(b) Backpropagation Below is a deep network with input x. Values x, h1, h2, z are all scalars.

h1 “ f1pxq, h2 “ f2pxq, z “ h1h2 (1)

Derive the following gradients in terms of x, h1, h2,
Bf1
Bx

,
Bf2
Bx

.

(i) [?? pts] Derive
Bz

Bh1
h2

When taking the partial derivative of z in terms of h1, we treat h2 as a constant.

(ii) [?? pts] Derive
Bz

Bh2
h1

When taking the partial derivative of z in terms of h2, we treat h1 as a constant.

(iii) [?? pts] Derive
Bz

Bx

h2
Bf1
Bx

` h1
Bf2
Bx

We use product rule and chain rule.
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(c) Deep Network Below is a deep network with inputs x1, x2. The internal nodes are computed below. All
variables are scalar values.

h1 “ w11x1 ` w12x2 h2 “ w21x1 ` w22x2 h3 “ w31x1 ` w32x2

r1 “ maxph1, 0q r2 “ maxph2, 0q r3 “ maxph3, 0q

s1 “ maxpr2, r3q

y1 “
exppr1q

exppr1q ` expps1q
y2 “

expps1q

exppr1q ` expps1q

z “ y1 ` y2

(2)

(i) [?? pts] Forward propagation Now, given x1 “ 1, x2 “ ´2, w11 “ 6, w12 “ 2, w21 “ 4, w22 “ 7,
w31 “ 5, w32 “ 1, and the same values for x1, x2 above, compute the values of the internal nodes. Please
simplify any fractions.

h1 h2 h3 r1 r2

2 -10 3 2 0

r3 s y1 y2 z

3 3
1

1` e

e

1` e
1

(ii) [?? pts] Bounds on variables.
Find the tightest bounds on y1. y1 P p0, 1q

The output of a softmax is a probability distribution. Each element of the output is between 0 and 1.

Find the tightest bounds on z. z “ 1

The sum of the probability distribution is 1.
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h1 “ w11x1 ` w12x2 h2 “ w21x1 ` w22x2 h3 “ w31x1 ` w32x2

r1 “ maxph1, 0q r2 “ maxph2, 0q r3 “ maxph3, 0q

s1 “ maxpr2, r3q

y1 “
exppr1q

exppr1q ` expps1q
y2 “

expps1q

exppr1q ` expps1q

z “ y1 ` y2

(3)

(iii) [?? pts] Backpropagation Compute the following gradients analytically. The answer should be an ex-
pression of any of the nodes in the network (x1, x2, h1, h2, h3, r1, r2, r3, s1, y1, y2, z) or weights w11, w12, w21, w22, w31, w32.

Hint: Recall that for functions of the form gpxq “ 1
1`exppa´xq ,

Bg
Bx “ gpxq p1´ gpxqq. Also, your answer

may be a constant or a piecewise function.

Bh1
Bw12

Bh1
Bx1

Br1
Bh1

By1
Br1

x2 w11 1rh1 ą 0s y1p1´ y1q

By1
Bs1

Bz

By1

Bz

Bx1

Bs1
Br2

´y1y2 1 0 1rr2 ą r3s

Expanded solutions for selected examples below:

r1 “ maxph1, 0q. This is known as a ReLU (rectified linear unit) function. When h1 is positive, r1 “ h1,
so the derivative is 1. When h1 is negative, r1 is flat, so the derivative is 0.

y1 “
exppr1q

exppr1q`exppr2q
“ 1

1`exppr2´r1q
dy1
dr1

“ ´1
p1`exppr2´r1qq2

ˆ p´ exppr2 ´ r1qq, by chain rule

“ 1
1`exppr2´r1q

ˆ
exppr2´r1q

1`exppr2´r1q

“ y1p1´ y1q
“ y1y2

dy1
dr2

“ ´1
p1`exppr2´r1qq2

ˆ pexppr2 ´ r1qq, by chain rule. Notice that this is identical to the case above, but

with a negative sign missing on the 2nd term.
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“ ´1
1`exppr2´r1q

ˆ
exppr2´r1q

1`exppr2´r1q

“ ´y1p1´ y1q
“ ´y1y2

No matter how x1, x2 change, z is always 1, so the gradient with respect to x1 is 0.

When r2 ą r3, s1 “ r2, so Bs1
r2
“ 1. When r2 ă r3, s1 “ r3, so Bs1

r2
“ 0.
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