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Q1. [14 pts] Probability
(a) For the following questions, you will be given a set of probability tables and a set of conditional indepen-

dence assumptions. Given these tables and independence assumptions, write an expression for the requested
probability tables. Keep in mind that your expressions cannot contain any probabilities other than the given
probability tables. If it is not possible, mark “Not possible.”

(i) [1 pt] Using probability tables P(A),P(A | C),P(B | C),P(C | A,B) and no conditional independence
assumptions, write an expression to calculate the table P(A,B | C).

P(A,B | C) = # Not possible.

(ii) [1 pt] Using probability tables P(A),P(A | C),P(B | A),P(C | A,B) and no conditional independence
assumptions, write an expression to calculate the table P(B | A,C).

P(B | A,C) = # Not possible.

(iii) [1 pt] Using probability tables P(A | B),P(B),P(B | A,C),P(C | A) and conditional independence as-
sumption A ⊥⊥ B, write an expression to calculate the table P(C).

P(C) = # Not possible.

(iv) [1 pt] Using probability tables P(A | B,C),P(B),P(B | A,C),P(C | B,A) and conditional independence
assumption A ⊥⊥ B | C, write an expression for P(A,B,C).

P(A,B,C) = # Not possible.

(b) For each of the following equations, select the minimal set of conditional independence assumptions necessary
for the equation to be true.

(i) [1 pt] P(A,C) = P(A | B) P(C)

� A ⊥⊥ B | C
� B ⊥⊥ C | A
� A ⊥⊥ C
� A ⊥⊥ C | B

� B ⊥⊥ C
� A ⊥⊥ B
� No independence assumptions needed.

(ii) [1 pt] P(A | B,C) = P(A) P(B|A) P(C|A)
P(B|C) P(C)

� A ⊥⊥ C
� A ⊥⊥ B | C
� B ⊥⊥ C | A
� A ⊥⊥ B

� A ⊥⊥ C | B
� B ⊥⊥ C
� No independence assumptions needed.

(iii) [1 pt] P(A,B) =
∑

c P(A | B, c) P(B | c) P(c)

� B ⊥⊥ C | A
� B ⊥⊥ C
� A ⊥⊥ C | B
� A ⊥⊥ C

� A ⊥⊥ B
� A ⊥⊥ B | C
� No independence assumptions needed.
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(iv) [1 pt] P(A,B | C,D) = P(A | C,D) P(B | A,C,D)

� A ⊥⊥ B | D
� C ⊥⊥ D | A
� C ⊥⊥ D | B
� C ⊥⊥ D

� A ⊥⊥ B
� A ⊥⊥ B | C
� No independence assumptions needed.

(c) (i) [2 pts] Mark all expressions that are equal to P(A | B), given no independence assumptions.

� ∑
c P (A, c | B)

� P (A,C|B)
P (C|B)

� ∑
c P (A | B, c)

�
∑

c P (A,B,c)∑
c P (B,c)

� P (B|A) P (A|C)∑
c P (B,c)

� P (A|C,B) P (C|A,B)
P (C|B)

� None of the provided options.

(ii) [2 pts] Mark all expressions that are equal to P(A,B,C), given that A ⊥⊥ B.

� P (A) P (B) P (C | A,B)

� P (C) P (A | C) P (B | C)

� P (A) P (B | A) P (C | A,B)

� P (A | C) P (C | B) P (B)

� P (A) P (C | A) P (B | C)

� P (A,C) P (B | A,C)

� None of the provided options.

(iii) [2 pts] Mark all expressions that are equal to P(A,B | C), given that A ⊥⊥ B | C.

� P (A | C) P (B | C)

�
∑

c P (A,B,c)

P (C)

� P (C) P (B|C) P (A|C)
P (C|A,B)

� P (A) P (B|A) P (C|A,B)∑
c P (A,B,c)

� P (C,A|B) P (B)
P (C)

� P (A | B) P (B | C)

� None of the provided options.

4



Q2. [8 pts] Bayes’ Nets: Representation
Assume we are given the following ten Bayes’ nets, labeled G1 to G10:

A B

C

G1

A B

C

G2

A B

C

G3

A B

C

G4

A B

C

G5

A B

C

G6

A B

C

G7

A B

C

G8

A B

C

G9

A B

C

G10

Assume we are also given the following three Bayes’ nets, labeled B1 to B3:

A B

C

B1

A B

C

B2

A B

C

B3

(a) [2 pts] Assume we know that a joint distribution d1 (over A,B,C) can be represented by Bayes’ net B1. Mark
all of the following Bayes’ nets that are guaranteed to be able to represent d1.

� G1

� G6

� G2

� G7

� G3

� G8

� G4

� G9

� G5

� G10

� None of the above.

(b) [2 pts] Assume we know that a joint distribution d2 (over A,B,C) can be represented by Bayes’ net B2. Mark
all of the following Bayes’ nets that are guaranteed to be able to represent d2.

� G1

� G6

� G2

� G7

� G3

� G8

� G4

� G9

� G5

� G10

� None of the above.

(c) [2 pts] Assume we know that a joint distribution d3 (over A,B,C) cannot be represented by Bayes’ net B3.
Mark all of the following Bayes’ nets that are guaranteed to be able to represent d3.

� G1

� G6

� G2

� G7

� G3

� G8

� G4

� G9

� G5

� G10

� None of the above.

(d) [2 pts] Assume we know that a joint distribution d4 (over A,B,C) can be represented by Bayes’ nets B1, B2,
and B3. Mark all of the following Bayes’ nets that are guaranteed to be able to represent d4.

� G1

� G6

� G2

� G7

� G3

� G8

� G4

� G9

� G5

� G10

� None of the above.
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Q3. [8 pts] Bayes’ Nets: Independence
For the following questions, each edge shown in the Bayes’ nets below does not have a direction. For each of
the edges shown, assign a direction (by adding an arrowhead at one end of each edge) to ensure that the Bayes’
Net structure implies the assumptions provided. You cannot add new edges. The Bayes’ nets can imply more
assumptions than listed, but they must imply the ones listed. If there does not exist an assignment of direc-
tions that satisfies all the assumptions listed, clearly mark the Not Possible choice. If you mark the Not Possi-
ble choice, the directions that you draw in the Bayes’ net will not be looked at. Keep in mind that Bayes’ Nets
cannot have directed cycles. You may find it useful to use the front of the next page to work on this problem.

(a) [2 pts]

A B C D E

Assumptions:

• A ⊥⊥ E
• B ⊥⊥ E | D
• A ⊥⊥ E | C

# Not Possible

(b) [3 pts]

A B C D E

F G H

Assumptions:

• C ⊥⊥ E | H
• A ⊥⊥ H | B,D
• F ⊥⊥ G | A,D

# Not Possible

(c) [3 pts]

A B C D E

F G H

Assumptions:

• B ⊥⊥ H
• B ⊥⊥ G | E,F
• A ⊥⊥ E | C,H

# Not Possible
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Q4. [6 pts] Bayes’ Nets: Inference
Assume we are given the following Bayes’ net, and would like to perform inference to obtain P (B,D | E = e,H = h).

A

B C D

E F

G

H

(a) [1 pt] What is the number of rows in the largest factor generated by inference by enumeration, for this query
P (B,D | E = e,H = h)? Assume all the variables are binary.

# 28 # 26 # 22 # 23

# None of the above.

(b) [2 pts] Mark all of the following variable elimination orderings that are optimal for calculating the answer for
the query P (B,D | E = e,H = h). Optimality is measured by the sum of the sizes of the factors that are
generated. Assume all the variables are binary.

� C,A, F,G � G,F,C,A � F,G,C,A � A,C, F,G

� None of the above.

(c) Suppose we decide to perform variable elimination to calculate the query P (B,D | E = e,H = h), and choose
to eliminate F first.

(i) [2 pts] When F is eliminated, what intermediate factor is generated and how is it calculated? Make sure
it is clear which variable(s) come before the conditioning bar and which variable(s) come after.

f1( | ) =
∑
f

(ii) [1 pt] Now consider the set of distributions that can be represented by the remaining factors after F is
eliminated. Draw the minimal number of directed edges on the following Bayes’ Net structure, so that it
can represent any distribution in this set. If no additional directed edges are needed, please fill in that
option below.

A

B C D

E

G

H

# No additional directed edges needed
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Q5. [10 pts] Bayes’ Nets: Sampling
Assume we are given the following Bayes’ net, with the associated conditional probability tables (CPTs).

A

B

C D

E

A P(A)
+a 0.5
−a 0.5

A B P(B | A)
+a +b 0.2
+a −b 0.8
−a +b 0.5
−a −b 0.5

B C P(C | B)
+b +c 0.4
+b −c 0.6
−b +c 0.8
−b −c 0.2

B D P(D | B)
+b +d 0.2
+b −d 0.8
−b +d 0.2
−b −d 0.8

C D E P(E | C, D)
+c +d +e 0.6
+c +d −e 0.4
+c −d +e 0.2
+c −d −e 0.8
−c +d +e 0.4
−c +d −e 0.6
−c −d +e 0.8
−c −d −e 0.2

You are given a set of the following samples, but are not told whether they were collected with rejection sampling
or likelihood weighting.

−a −b +c +d +e
−a +b +c −d +e
−a −b −c −d +e
−a −b +c −d +e
−a +b +c +d +e

Throughout this problem, you may answer as either numeric expressions (e.g. 0.1∗0.5) or numeric values (e.g. 0.05).

(a) [2 pts] Assuming these samples were generated from rejection sampling, what is the sample based estimate of
P (+b | −a,+e)?

Answer:

(b) [2 pts] Assuming these samples were generated from likelihood weighting, what is the sample-based estimate of
P (+b | −a,+e)?

Answer:
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(c) [2 pts] Again, assume these samples were generated from likelihood weighting. However, you are not sure about
the original CPT for P (E | C,D) given above being the CPT associated with the Bayes’ Net: With 50%
chance, the CPT associated with the Bayes’ Net is the original one. With the other 50% chance, the CPT is
actually the CPT below.

C D E P(E | C, D)
+c +d +e 0.8
+c +d −e 0.2
+c −d +e 0.4
+c −d −e 0.6
−c +d +e 0.2
−c +d −e 0.8
−c −d +e 0.6
−c −d −e 0.4

Samples from previous page copied below for convenience:

−a −b +c +d +e
−a +b +c −d +e
−a −b −c −d +e
−a −b +c −d +e
−a +b +c +d +e

Given this uncertainty, what is the sample-based estimate of P (+b | −a,+e)?

Answer:

(d) [1 pt] Now assume you can only sample a small, limited number of samples, and you want to estimate
P (+b,+d | −a) and P (+b,+d | +e). You are allowed to estimate the answer to one query with likelihood
weighting, and the other answer with rejection sampling. In order to obtain the best estimates for both
queries, which query should you estimate with likelihood weighting? (The other query will have to be estimated
with rejection sampling.)

# P (+b,+d | −a)

# P (+b,+d | +e)
# Either – both choices allow you to obtain the best estimates for both queries.

(e) Suppose you choose to use Gibbs sampling to estimate P (B,E | +c,−d). Assume the CPTs are the same as
the ones for parts (a) and (b). Currently your assignments are the following:

−a −b +c −d +e

(i) [1 pt] Suppose the next step is to resample E.
What is the probability that the new assignment to E will be +e?

Answer:

(ii) [1 pt] Instead, suppose the next step is to resample A.
What is the probability that the new assignment to A will be +a?

Answer:

(iii) [1 pt] Instead, suppose the next step is to resample B.
What is the probability that the new assignment to B will be +b?

Answer:
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Q6. [13 pts] VPI
Consider a decision network with the following structure. Node A is an action, and node U is the utility:

A

B C

D E

F

G

U

(a) [1 pt] Choose the option which is guaranteed to be true, or “Neither guaranteed” if no option is guaranteed to
be true.

# V PI(C) = 0 # V PI(C) > 0 # Neither guaranteed

(b) [2 pts] Mark all of the following that are guaranteed to be true.

� V PI(E) ≤ V PI(B) � V PI(E) ≥ V PI(B)

� V PI(E) = V PI(B) � None of the above

(c) [2 pts] Mark all of the following that are guaranteed to be true.

� V PI(E | F ) ≤ V PI(B | F ) � V PI(E | F ) ≥ V PI(B | F )

� V PI(E | F ) = V PI(B | F ) � None of the above
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The decision network on the previous page has been reproduced below:

A

B C

D E

F

G

U

(d) [2 pts] Noting that E ⊥⊥ G | F , mark all of the following that are guaranteed to be true.

� V PI(E,G | F ) = V PI(E | F ) + V PI(G | E,F ) � V PI(E,G | F ) = V PI(E | F )V PI(G | E,F )

� V PI(E,G | F ) = V PI(E | F ) + V PI(G | F ) � V PI(E,G | F ) = V PI(E | F )V PI(G | F )

� None of the above

(e) [3 pts] Suppose we have two actions, a1 and a2. In addition, you are given P (B) and P (D) below. Fill in
the empty entries in the utility table below with either 1 or −1 such that V PI(B) = V PI(D) = 0, but
V PI(B,D) > 0.

Note on grading: You will get 1 point for each condition you enforce correctly, that is, you get 1 point each for
ensuring V PI(B) = 0, V PI(D) = 0, and V PI(B,D) > 0. If you cannot enforce all three conditions, try to
enforce two for partial credit.

P (B)
+b 0.5
-b 0.5

P (D)
+d 0.5
-d 0.5

Action a1: U(a1, B,D)
+b +d 1

−b +d

+b −d

−b −d

Action a2: U(a2, B,D)
+b +d

−b +d

+b −d

−b −d

(f) For this question, assume you did the previous part correctly - that is, you should assume that
V PI(B) = V PI(D) = 0, and V PI(B,D) > 0.

Now taking into account your answer from the previous part, choose the option which is guaranteed to be true,
or “Neither guaranteed” if no option is guaranteed to be true. This means that you should fill in one
circle for each row.

(i) [1 pt] # V PI(E) = 0 # V PI(E) > 0 # Neither guaranteed

(ii) [1 pt] # V PI(G) = 0 # V PI(G) > 0 # Neither guaranteed

(iii) [1 pt] # V PI(D | B) = 0 # V PI(D | B) > 0 # Neither guaranteed
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Q7. [13 pts] HMM: Where is the Car?
Transportation researchers are trying to improve traffic in the city but, in order to do that, they first need to estimate
the location of each of the cars in the city. They need our help to model this problem as an inference problem of an
HMM. For this question, assume that only one car is being modeled.

(a) The structure of this modified HMM is given below, which includes X, the location of the car; S, the noisy
location of the car from the signal strength at a nearby cell phone tower; and G, the noisy location of the car
from GPS.

. . . Xt−1 Xt Xt+1 . . .

. . . St−1 Gt−1 St Gt St+1 Gt+1 . . .

We want to perform filtering with this HMM. That is, we want to compute the belief P (xt|s1:t, g1:t), the
probability of a state xt given all past and current observations.

The dynamics update expression has the following form:

P (xt|s1:t−1, g1:t−1) = (i) (ii) (iii) P (xt−1|s1:t−1, g1:t−1).

Complete the expression by choosing the option that fills in each blank.

(i) [1 pt] # P (s1:t, g1:t) # P (s1:t−1, g1:t−1) # P (s1:t)P (g1:t) # P (s1:t−1)P (g1:t−1) # 1

(ii) [1 pt] # ∑
xt

# ∑
xt−1

# maxxt−1
# maxxt

# 1

(iii) [1 pt] # P (xt−2, xt−1) # P (xt−1 | xt−2) # P (xt−1, xt) # P (xt|xt−1) # 1

The observation update expression has the following form:

P (xt|s1:t, g1:t) = (iv) (v) (vi) P (xt|s1:t−1, g1:t−1).

Complete the expression by choosing the option that fills in each blank.

(iv) [1 pt] # P (st, gt|s1:t−1, g1:t−1) # P (s1:t−1, g1:t−1|st, gt) # P (st|s1:t−1)P (gt|g1:t−1)

# P (s1:t−1|st)P (g1:t−1|gt) # 1

P (st, gt|s1:t−1, g1:t−1)
# 1

P (s1:t−1, g1:t−1|st, gt)

# 1

P (st|s1:t−1)P (gt|g1:t−1)
# 1

P (s1:t−1|st)P (g1:t−1|gt)
# 1

(v) [1 pt] # ∑
xt−1

# ∑
xt

# maxxt−1
# maxxt

# 1

(vi) [1 pt] # P (st−1|xt−1)P (gt−1|xt−1) # P (xt, st)P (xt, gt) # P (xt, st, gt)

# P (xt−1, st−1)P (xt−1, gt−1) # P (xt−1, st−1, gt−1) # P (xt|st)P (xt|gt)
# P (xt−1|st−1)P (xt−1|gt−1) # P (st|xt)P (gt|xt) # 1

(b) It turns out that if the car moves too fast, the quality of the cell phone signal decreases. Thus, the signal-
dependent location St not only depends on the current state Xt but it also depends on the previous state Xt−1.
Thus, we modify our original HMM for a new more accurate one, which is given below.

. . . Xt−1 Xt Xt+1 . . .

. . . St−1 Gt−1 St Gt St+1 Gt+1 . . .

Again, we want to compute the belief P (xt|s1:t, g1:t). In this part we consider an update that combines the
dynamics and observation update in a single update.
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For convenience, the HMM from part (b) from the last page is redrawn below.

. . . Xt−1 Xt Xt+1 . . .

. . . St−1 Gt−1 St Gt St+1 Gt+1 . . .

P (xt|s1:t, g1:t) = (i) (ii) (iii) (iv) P (xt−1|s1:t−1, g1:t−1).

Complete the forward update expression by choosing the option that fills in each blank.

(i) [1 pt] # P (st, gt|s1:t−1, g1:t−1) # P (s1:t−1, g1:t−1|st, gt) # P (st|s1:t−1)P (gt|g1:t−1)

# 1

P (st, gt|s1:t−1, g1:t−1)
# 1

P (s1:t−1, g1:t−1|st, gt)
# P (s1:t−1|st)P (g1:t−1|gt)

# 1

P (st|s1:t−1)P (gt|g1:t−1)
# 1

P (s1:t−1|st)P (g1:t−1|gt)
# 1

(ii) [1 pt] # ∑
xt−1

# ∑
xt

# maxxt−1 # maxxt # 1

(iii) [1 pt] # P (xt−2, xt−1, st−1)P (xt−1, gt−1) # P (xt−1, xt, st)P (xt, gt) # P (st−1, gt−1|xt−1)

# P (st−1|xt−2, xt−1)P (gt−1|xt−1) # P (st|xt−1, xt)P (gt|xt) # P (st, gt|xt)
# P (xt−2, xt−1|st−1)P (xt−1|gt−1) # P (xt−1, xt|st)P (xt|gt) # 1

# P (xt−2, xt−1, st−1, gt−1) # P (xt−1, xt, st, gt)

(iv) [1 pt] # P (xt−1, xt) # P (xt|xt−1) # P (xt−2, xt−1) # P (xt−1|xt−2) # 1

(c) The Viterbi algorithm finds the most probable sequence of hidden states X1:T , given a sequence of observations
s1:T , for some time t = T . Recall the canonical HMM structure, which is shown below.

. . . Xt−1 Xt Xt+1 . . .

. . . St−1 St St+1 . . .

For this canonical HMM, the Viterbi algorithm performs the following dynamic programming computations:

mt[xt] = P (st|xt) max
xt−1

P (xt|xt−1)mt−1[xt−1].

We consider extending the Viterbi algorithm for the modified HMM from part (b). We want to find the most
likely sequence of states X1:T given the sequence of observations s1:T and g1:T . The dynamic programming
update for t > 1 for the modified HMM has the following form:

mt[xt] = (i) (ii) (iii) mt−1[xt−1].

Complete the expression by choosing the option that fills in each blank.

(i) [1 pt] # ∑
xt

# ∑
xt−1

# maxxt # maxxt−1 # 1

(ii) [1 pt] # P (xt−2, xt−1, st−1)P (xt−1, gt−1) # P (xt−1, xt, st)P (xt, gt) # P (st−1, gt−1|xt−1)

# P (st−1|xt−2, xt−1)P (gt−1|xt−1) # P (st|xt−1, xt)P (gt|xt) # P (st, gt|xt)
# P (xt−2, xt−1|st−1)P (xt−1|gt−1) # P (xt−1, xt|st)P (xt|gt) # 1

# P (xt−2, xt−1, st−1, gt−1) # P (xt−1, xt, st, gt)

(iii) [1 pt] # P (xt−1, xt) # P (xt|xt−1) # P (xt−2, xt−1) # P (xt−1|xt−2) # 1

14



Q8. [11 pts] Particle Filtering: Where are the Two Cars?
As before, we are trying to estimate the location of cars in a city, but now, we model two cars jointly, i.e. car i for
i ∈ {1, 2}. The modified HMM model is as follows:

• X(i) – the location of car i
• S(i) – the noisy location of the car i from the signal strength at a nearby cell phone tower
• G(i) – the noisy location of car i from GPS

. . . X
(1)
t−1 X

(1)
t X

(1)
t+1

. . .

. . . X
(2)
t−1 X

(2)
t X

(2)
t+1

. . .

. . . S
(1)
t−1 S

(1)
t S

(1)
t+1

. . .

. . . S
(2)
t−1 S

(2)
t S

(2)
t+1

. . .

G
(1)
t−1 G

(1)
t G

(1)
t+1

G
(2)
t−1 G

(2)
t G

(2)
t+1

d D(d) EL(d) EN (d) EG(d)
-4 0.05 0 0.02 0
-3 0.10 0 0.04 0.03
-2 0.25 0.05 0.09 0.07
-1 0.10 0.10 0.20 0.15
0 0 0.70 0.30 0.50
1 0.10 0.10 0.20 0.15
2 0.25 0.05 0.09 0.07
3 0.10 0 0.04 0.03
4 0.05 0 0.02 0

The signal strength from one car gets noisier if the other car is at the same location. Thus, the observation S
(i)
t also

depends on the current state of the other car X
(j)
t , j 6= i.

The transition is modeled using a drift model D, the GPS observation G
(i)
t using the error model EG, and the

observation S
(i)
t using one of the error models EL or EN , depending on the car’s speed and the relative location of

both cars. These drift and error models are in the table above. The transition and observation models are:

P (X
(i)
t |X

(i)
t−1) = D(X

(i)
t −X

(i)
t−1)

P (S
(i)
t |X

(i)
t−1, X

(i)
t , X

(j)
t ) =

{
EN (X

(i)
t − S

(i)
t ), if |X(i)

t −X
(i)
t−1| ≥ 2 or X

(i)
t = X

(j)
t

EL(X
(i)
t − S

(i)
t ), otherwise

P (G
(i)
t |X

(i)
t ) = EG(X

(i)
t −G

(i)
t ).

Throughout this problem you may give answers either as unevaluated numeric expressions (e.g. 0.1·0.5) or as numeric
values (e.g. 0.05). The questions are decoupled.

(a) Assume that at t = 3, we have the single particle (X
(1)
3 = −1, X

(2)
3 = 2).

(i) [2 pts] What is the probability that this particle becomes (X
(1)
4 = −3, X

(2)
4 = 3) after passing it through

the dynamics model?

Answer:

(ii) [2 pts] Assume that there are no sensor readings at t = 4. What is the joint probability that the original

single particle (from t = 3) becomes (X
(1)
4 = −3, X

(2)
4 = 3) and then becomes (X

(1)
5 = −4, X

(2)
5 = 4)?

Answer:
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For convenience, the HMM and probabilities from the last page are redrawn and rewritten below.

. . . X
(1)
t−1 X

(1)
t X

(1)
t+1

. . .

. . . X
(2)
t−1 X

(2)
t X

(2)
t+1

. . .

. . . S
(1)
t−1 S

(1)
t S

(1)
t+1

. . .

. . . S
(2)
t−1 S

(2)
t S

(2)
t+1

. . .

G
(1)
t−1 G

(1)
t G

(1)
t+1

G
(2)
t−1 G

(2)
t G

(2)
t+1

d D(d) EL(d) EN (d) EG(d)
-4 0.05 0 0.02 0
-3 0.10 0 0.04 0.03
-2 0.25 0.05 0.09 0.07
-1 0.10 0.10 0.20 0.15
0 0 0.70 0.30 0.50
1 0.10 0.10 0.20 0.15
2 0.25 0.05 0.09 0.07
3 0.10 0 0.04 0.03
4 0.05 0 0.02 0

P (X
(i)
t |X

(i)
t−1) = D(X

(i)
t −X

(i)
t−1)

P (S
(i)
t |X

(i)
t−1, X

(i)
t , X

(j)
t ) =

{
EN (X

(i)
t − S

(i)
t ), if |X(i)

t −X
(i)
t−1| ≥ 2 or X

(i)
t = X

(j)
t

EL(X
(i)
t − S

(i)
t ), otherwise

P (G
(i)
t |X

(i)
t ) = EG(X

(i)
t −G

(i)
t ).

For the remaining of this problem, we will be using 2 particles at each time step.

(b) At t = 6, we have particles [(X
(1)
6 = 3, X

(2)
6 = 0), (X

(1)
6 = 3, X

(2)
6 = 5)]. Suppose that after weighting, resam-

pling, and transitioning from t = 6 to t = 7, the particles become [(X
(1)
7 = 2, X

(2)
7 = 2), (X

(1)
7 = 4, X

(2)
7 = 1)].

(i) [2 pts] At t = 7, you get the observations S
(1)
7 = 2, G

(1)
7 = 2, S

(2)
7 = 2, G

(2)
7 = 2. What is the weight of

each particle?
Particle Weight

(X
(1)
7 = 2, X

(2)
7 = 2)

(X
(1)
7 = 4, X

(2)
7 = 1)

(ii) [2 pts] Suppose both cars’ cell phones died so you only get the observations G
(1)
7 = 2, G

(2)
7 = 2. What is

the weight of each particle?
Particle Weight

(X
(1)
7 = 2, X

(2)
7 = 2)

(X
(1)
7 = 4, X

(2)
7 = 1)

(c) [3 pts] To decouple this question, assume that you got the following weights for the two particles.

Particle Weight

(X
(1)
7 = 2, X

(2)
7 = 2) 0.09

(X
(1)
7 = 4, X

(2)
7 = 1) 0.01

What is the belief for the location of car 1 and car 2 at t = 7?

Location P (X
(1)
7 ) P (X

(2)
7 )

X
(i)
7 = 1

X
(i)
7 = 2

X
(i)
7 = 4
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Q9. [7 pts] Naive Bayes MLE
Consider a naive Bayes classifier with two features, shown below. We have prior information that the probability
model can be parameterized by λ and p, as shown below: Note that P (X1 = 0|Y = 0) = P (X1 = 1|Y = 1) = p and
P (X1|Y ) = P (X2|Y ) (they share the parameter p). Call this model M1.

Y

X1 X2

Y P (Y )
0 λ
1 1 - λ

X1 Y P (X1|Y )
0 0 p
1 0 1− p
0 1 1− p
1 1 p

X2 Y P (X2|Y )
0 0 p
1 0 1− p
0 1 1− p
1 1 p

We have a training set that contains all of the following:

• n000 examples with X1 = 0, X2 = 0, Y = 0

• n010 examples with X1 = 0, X2 = 1, Y = 0

• n100 examples with X1 = 1, X2 = 0, Y = 0

• n110 examples with X1 = 1, X2 = 1, Y = 0

• n001 examples with X1 = 0, X2 = 0, Y = 1

• n011 examples with X1 = 0, X2 = 1, Y = 1

• n101 examples with X1 = 1, X2 = 0, Y = 1

• n111 examples with X1 = 1, X2 = 1, Y = 1

(a) [2 pts] Solve for the maximum likelihood estimate (MLE) of the parameter p with respect to

n000, n100, n010, n110, n001, n101, n011, and n111.

p =

(b) [2 pts] For each of the following values of λ, p, X1, and X2, classify the value of Y . Hint: No detailed calculation
should be necessary.

λ p X1 X2 Y

3/4 5/8 0 0

2/5 4/7 1 0

(c) [1 pt] For the following value of λ, p, X1, and X2, classify the value of Y . Detailed calculation may be necessary.

λ p X1 X2 Y

3/5 3/7 0 0

(d) [2 pts] Now let’s consider a new model M2, which has the same Bayes’ Net structure as M1, but where
we have a p1 value for P (X1 = 0 | Y = 0) = P (X1 = 1 | Y = 1) = p1 and a separate p2 value for
P (X2 = 0 | Y = 0) = P (X2 = 1 | Y = 1) = p2, and we don’t constrain p1 = p2. Let LM1 be the likelihood of
the training data under model M1 with the maximum likelihood parameters for M1. Let LM2 be the likelihood
of the training data under model M2 with the maximum likelihood parameters for M2. Which of the following
properties are guaranteed to be true?

# LM1 ≥ LM2

# LM1 ≤ LM2

# Insufficient information, the above relationships rely on the particular training data.

# None of the above.
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Q10. [10 pts] Perceptron
(a) [1 pt] Suppose you have a binary perceptron in 2D with weight vector w = r [w1, w2]T . You are given w1 and

w2, and are given that r > 0, but otherwise not told what r is. Assume that ties are broken as positive.

Can you determine the perceptron’s classification of a new example x with known feature vector f(x)?

# Always # Sometimes # Never

(b) Now you are learning a multi-class perceptron between 4 classes. The weight vectors are currently [1, 0]T ,
[0, 1]T , [−1, 0]T , [0,−1]T for the classes A, B, C, and D. The next training example x has a label of A and
feature vector f(x).
For the following questions, do not make any assumptions about tie-breaking. (Do not write down a solution
that creates a tie.)

(i) [1 pt] Write down a feature vector in which no weight vectors will be updated.

f(x) =


 # Not possible

(ii) [1 pt] Write down a feature vector in which only wA will be updated by the perceptron.

f(x) =


 # Not possible

(iii) [1 pt] Write down a feature vector in which only wA and wB will be updated by the perceptron.

f(x) =


 # Not possible

(iv) [1 pt] Write down a feature vector in which only wA and wC will be updated by the perceptron.

f(x) =


 # Not possible

The weight vectors are the same as before, but now there is a bias feature with value of 1 for all x and the
weight of this bias feature is 0,−2, 1,−1 for classes A, B, C, and D respectively. As before, the next training
example x has a label of A and a feature vector f(x). The always “1” bias feature is the first entry in f(x).

(v) [1 pt] Write down a feature vector in which only wB and wC will be updated by the perceptron.

f(x) =


1

 # Not possible

(vi) [1 pt] Write down a feature vector in which only wA and wC will be updated by the perceptron.

f(x) =


1

 # Not possible

(c) Suppose your training data is linearly separable and you are classifying between label Y and label Z. The
mistake bound ( kδ2 ) is equal to 3, which is the maximum number of weight vector updates the perceptron
might have to do before it is guaranteed to converge. There are 100 examples in your training set. Assume the
perceptron cycles through the 100 examples in a fixed order.

(i) [1 pt] What is the maximum number of classifications the perceptron might make before it is guaranteed
to have converged?

# 300 # 103 # 1003 # 3 # 3100 # None of the options

(ii) [2 pts] [true or false] After convergence, the learned perceptron will correctly classify all training examples.
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