
CS 188
Spring 2015

Introduction to
Artificial Intelligence Final V1

• You have approximately 2 hours and 50 minutes.

• The exam is closed book, closed calculator, and closed notes except your three crib sheets.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation or show your work.

• For multiple choice questions,

– � means mark all options that apply

– # means mark a single choice

• There are multiple versions of the exam. For fairness, this does not impact the questions asked, only the
ordering of options within a given question.

First name

Last name

SID

edX username

First and last name of student to your left

First and last name of student to your right

For staff use only:
Q1. Agent Testing Today! /1
Q2. Power Pellets /6
Q3. Satisfying Search /15
Q4. Worst-Case Backtracking /6
Q5. Best-Case Pruning /7
Q6. Ghostbusters /10
Q7. MDPs /6
Q8. RL /8
Q9. Bayes Net and Decision Networks /8
Q10. DNA Sequencing /7
Q11. Dynamic Bayes’ Nets /11
Q12. Decision Trees and Other Classifiers /15

Total /100

1

THIS PAGE IS INTENTIONALLY LEFT BLANK

Q1. [1 pt] Agent Testing Today!

It’s testing time! Not only for you, but for our CS188 robots as well! Circle your favorite robot below.

Any answer was acceptable.

3

Q2. [6 pts] Power Pellets
Consider a Pacman game where Pacman can eat 3 types of pellets:

• Normal pellets (n-pellets), which are worth one point.

• Decaying pellets (d-pellets), which are worth max(0, 5− t) points, where t is time.

• Growing pellets (g-pellets), which are worth t points, where t is time.

The pellet’s point value stops changing once eaten. For example, if Pacman eats one g-pellet at t = 1 and one d-pellet
at t = 2, Pacman will have won 1 + 3 = 4 points.

Pacman needs to find a path to win at least 10 points but he wants to minimize distance travelled. The cost between
states is equal to distance travelled.

(a) [2 pts] Which of the following must be including for a minimum, sufficient state space?

� Location and type of each pellet
� Total points Pacman has won
� How far Pacman has travelled
� Current time
� How many pellets Pacman has eaten and the point value of each eaten pellet
� Pacman’s location
� Which pellets Pacman has eaten

A state space should include which pellets are left on the board, the current value of pellets, Pacman’s location, and
the total points collected so far. With this in mind:
(1) The starting location and type of each pellet are not included in the state space as this is something that does
not change during the search. This is analogous to how the walls of a Pacman board are not included in the state
space.
(2) How far Pacman has travelled does not need to be explicitly tracked by the state, since this will be reflected in
the cost of a path.
(3) Pacman does need the current time to determine the value of pellets on the board.
(4) The number of pellets Pacman has eaten is extraneous.
(5) Pacman must track the total number of points won for the goal test.
(6) Pacman must know which pellets remain on the board, which is the complement of the pellets he has eaten.

(b) [2 pts] Which of the following are admissible heuristics? Let x be the number of points won so far.

� Distance to closest pellet, except if in the goal state, in which case the heuristic value is 0.
� Distance needed to win 10− x points, determining the value of all pellets as if they were n-pellets.
� Distance needed to win 10 − x points, determining the value of all pellets as if they were g-pellets (i.e. all
pellet values will be t.)

� Distance needed to win 10− x points, determining the value of all pellets as if they were d-pellets (i.e. all
pellet values will be max(0, 5− t).
� Distance needed to win 10 − x points assuming all pellets maintain current point value (g-pellets stop
increasing in value and d-pellets stop decreasing in value)

� None of the above

(1) Admissible; to get 10 points Pacman will always have to travel at least as far as the distance to the closest pellet,
so this will always be an underestimate.
(2) Not admissible; if all the pellets are actually g-pellets, assuming they are n-pellets will lead to Pacman collecting
more pellets in more locations, and thus travel further.
(3) Ambiguous; if pellets are n-pellets or d-pellets, Pacman will generally have to go further, except at the beginning
of the game when d-pellets are worth more, in which case this heuristic will over-estimate the cost to the goal.
However, if Pacman is allowed to stay in place with no cost, then this heuristic is admissable because the heuristic

4

will instead calculate all pellet values as 10. This option was ignored in scoring.
(4) Not admissible; if pellets are n-pellets or g-pellets, Pacman would have an overestimate.
(5) Not admissible; if pellets are g-pellets, then using the current pellet value might lead Pacman to collect more
locations, and thus travel further than necesarry.

(c) [2 pts] Instead of finding a path which minimizes distance, Pacman would like to find a path which minimizes
the following:

Cnew = a ∗ t+ b ∗ d

where t is the amount of time elapsed, d is the distance travelled, and a and b are non-negative constants
such that a + b = 1. Pacman knows an admissible heuristic when he is trying to minimize time (i.e. when
a = 1, b = 0), ht, and when he is trying to minimize distance, hd (i.e. when a = 0, b = 1).
Which of the following heuristics is guaranteed to be admissible when minimizing Cnew?

� max(ht, hd) � min(ht, hd) � mean(ht, hd) � a ∗ ht + b ∗ hd
� None of the above

For this question, think about the inequality Cnew = a ∗ t+ b ∗ d ≥ a ∗ht + b ∗hd. We can guarantee a heuristic hnew
is admissible if hnew ≤ a ∗ ht + b ∗ hd
(1) If a = b, 0.5 ∗ ht + 0.5 ∗ hd is not guaranteed to be less than a ∗ ht + b ∗ hd, so this will not be admissible.
(2) min(ht, hd) = a ∗min(ht, hd) + b ∗min(ht, hd) ≤ a ∗ ht + b ∗ hd
(3) max(ht, hd) will be greater than a ∗ ht + b ∗ hd unless ht = hd, wo this will not be admissible.
(4) Admissible.

5

Q3. [15 pts] Satisfying Search
Consider a search problem (S,A, Succ, s0, G), where all actions have cost 1. S is the set of states, A(s) is the set of
legal actions from a state s, Succ(s, a) is the state reached after taking action a in state s, s0 is the start state, and
G(s) is true if and only if s is a goal state.

Suppose we have a search problem where we know that the solution cost is exactly k, but we do not know the actual
solution. The search problems has |S| states and a branching factor of b.

(a) (i) [1 pt] Since the costs are all 1, we decide to run breadth-first tree search. Give the tightest bound on the
worst-case running time of breadth-first tree search in terms of |S|, b, and k.

The running time is O(bk) This is the normal running time for BFS.

(ii) [1 pt] Unfortunately, we get an out of memory error when we try to use breadth first search. Which of
the following algorithms is the best one to use instead?

Depth First Search
 Depth First Search limited to depth k
Iterative Deepening
Uniform Cost Search

Firstly, notice that depth first search limited to depth k will find the solution, since we know that the
solution is k moves long. Depth First search would explore paths of length larger than k, which is useless
computation. Iterative Deepening would first explore paths of length 1, then 2, and so on, which is useless
computation. Uniform Cost Search is equivalent to BFS when the costs are 1, and so will probably also
have an out of memory error.

Instead of running a search algorithm to find the solution, we can phrase this as a CSP:

Variables: X0, X1, X2, · · ·Xk

Domain of each variable: S, the set of all possible states

Constraints:

1. X0 is the start state, that is, X0 = s0.

2. Xk must be a goal state, that is, G(Xk) has to be true.

3. For every 0 ≤ i < k, (Xi, Xi+1) is an edge in the search graph, that is, there exists an action a ∈ A(Xi) such
that Xi+1 = Succ(Xi, a).

With these constraints, when we get a solution (X0 = s0, X1 = s1, · · ·Xk = sk), the solution to our original search
problem is the path s0 → s1 → · · · → sk.

(b) [2 pts] This is a tree-structured CSP. Illustrate this by drawing the constraint graph for k = 3 and providing a
linearization order. (For k = 3, the states should be named X0, X1, X2, and X3.)

X0 X1 X2 X3

Linearization Order: X0, X1, X2, X3 or X3, X2, X1, X0, although others are possible.

6

(c) We can solve this CSP using the tree-structured CSP algorithm. You can make the following assumptions:

1. For any state s, computing G(s) takes O(1) time.

2. Checking consistency of a single arc F → G takes O(fg) time, where f is the number of remaining values
that F can take on and g is the number of remaining values that G can take on.

Remember that the search problem has a solution cost of exactly k, |S| states, and a branching factor of b.

(i) [1 pt] Give the tightest bound on the time taken to enforce unary constraints, in terms of |S|, b, and k.

The running time to enforce unary constraints is O(|S|)

For the first constraint X0 = s0, we just need to change the domain of X0 to {s0} For the constraint that
Xk is a goal state, we need to compute G(s) for all states s, which takes O(|S|) time.

(ii) [1 pt] Give the tightest bound on the time taken to run the backward pass, in terms of |S|, b, and k.

The running time for the backward pass is O(k|S|2)

The backward pass simply enforces the consistency of k arcs, each of which takes O(|S|2) time, for a total
of O(k|S|2) time.

(iii) [1 pt] Give the tightest bound on the time taken to run the forward pass, in terms of |S|, b, and k.

The running time for the forward pass is O(k|S|)

The forward pass assigns values to variables in order, and then enforces consistency of an arc so that the
values for the next variable are all legal. When enforcing the consistency of Xi+1 → Xi, Xi has already
been assigned, so the time taken is O(|S| · 1) = O(|S|). This is done for each of the k arcs, for a total of
O(k|S|) time.

We would also accept O(kb), on the basis that after assigning a variable to Xi, you only need to restrict
Xi+1 to the b possible values that follow Xi.

(d) [2 pts] Suppose s0 → s1 → · · · → sk is a solution to the search problem. Mark all of the following options that
are guaranteed to be true after enforcing unary constraints and running arc consistency.

� The remaining values of Xi will be si and nothing else.
� The remaining values of Xi will be si and possibly other values.
� A solution can be found by setting each Xi to any of the remaining states in its domain.
� A solution can be found by executing the forward pass of the tree-structured CSP algorithm.
� None of the above

After enforcing unary constraints and running arc consistency, since this is a tree-structured CSP, we are
guaranteed that all remaining values are part of some solution, but not necessarily all solutions. In addition,
since arc consistency only eliminates impossible values, all the si values will still be present (since they are part
of the solution s0 → s1 → · · · → sk).

Thus, Xi will have si and other values (corresponding to other solutions). However, we cannot set each Xi

to any of the remaining states in its domain, if we set X1 to a state s′ and X2 to s′′, while we know there is
some solution where X1 = s′, and some (possibly different) solution where X2 = s′′, we are not guaranteed
that there is a solution where X1 = s′ and X2 = s′′.

The backward pass of the tree-structured CSP algorithm simply enforces consistency of some arcs. So, running
full arc consistency will eliminate at least all the values that the backward pass would have eliminated. So, we
can run the forward pass to find a solution.

(e) [4 pts] Suppose you have a heuristic h(s). You decide to add more constraints to your CSP (with the hope that
it speeds up the solver by eliminating many states quickly). Mark all of the following options that are valid
constraints that can be added to the CSP, under the assumption that h(s) is (a) any function (b) admissible
and (c) consistent. Recall that the cost of every action is 1.

7

Any h(s) h(s) is admissible h(s) is consistent

For every 0 ≤ i ≤ k, h(Xi) ≤ i � � �
For every 0 ≤ i ≤ k, h(Xi) ≤ k − i � � �
For every 0 ≤ i < k, h(Xi+1) ≤ h(Xi)− 1 � � �
For every 0 ≤ i < k, h(Xi+1) ≥ h(Xi)− 1 � � �
� None of the above

If we know nothing about the heuristic function h(s), none of the constraints are valid. (Indeed, it would be
very strange if we were able to write down constraints based on a function that could be anything.)

An admissible heuristic means that the value of the heuristic is an underestimate of the true cost to the goal.
At variable Xi, we know that the cost to the goal must be k − i, and so we can infer that h(Xi) ≤ k − i. As a
consequence, it is valid to add the constraints h(Xi) ≤ k − i.
Any consistent heuristic is also admissible, so a consistent heuristic also means that h(Xi) ≤ k − i is valid. In
addition, a consistent heuristic means that the heuristic value drops by at most 1 (the cost) across an edge.
Comparing Xi+1 and Xi, the drop in heuristic value is h(Xi)− h(Xi+1). Thus, we have h(Xi)− h(Xi+1) ≤ 1,
or h(Xi+1) ≥ h(Xi)− 1. Thus it is valid to add that constraint to the CSP as well.

(f) [2 pts] Now suppose we only know that the solution will have ≤ k moves. We do not need to find the optimal
solution - we only need to find some solution of cost ≤ k. Mark all of the following options such that if you
make single change described in that line it will correctly modify the CSP to find some solution of cost ≤ k.
Remember, the CSP can only have unary and binary constraints.

� Remove the constraints “(Xi, Xi+1) is an edge in the search graph”. Instead, add the constraints
“(Xi, Xi+1) is an edge in the search graph, AND Xi = Xi+1”.

� Remove the constraints “(Xi, Xi+1) is an edge in the search graph”. Instead, add the constraints
“(Xi, Xi+1) is an edge in the search graph, OR Xi = Xi+1”.
� Remove the constraint “Xk is a goal state.” Instead, add the constraint “There is some i, 0 ≤ i ≤ k, such
that Xi is a goal state”.
� Remove the constraint “Xk is a goal state.” Instead, add the constraint “For every 0 ≤ i ≤ k, Xi is a goal
state”.
� None of the above

If we say (Xi, Xi+1) is an edge AND Xi = Xi+1, we are forcing all of the variables to be the same state s0 (since
they all have to be equal to each other), so that cannot be right.

If we say (Xi, Xi+1) is an edge OR Xi = Xi+1, then basically the constraint says that transitions have to be made,
but we can also choose to not make a transition from i → i + 1 (in which case we would have Xi = Xi+1). This is
exactly what we want - this will allow us to make only as many transitions as necessary, and then all the remaining
“extra” states can be set to the previous state to satisfy the constraints.

It does not make sense to say that every state is a goal state - for example, the start state X0 = s0 is usually not a
goal state.

Saying that there is some i such that Xi is a goal state would work. It is not a unary or binary constraint (it is a
constraint on all of the variables). Because of the ambiguity in question statement regarding acceptable constraints,
this option was ignored. (Either filled in or blank was accepted.)

8

Q4. [6 pts] Worst-Case Backtracking
Consider solving the following CSP with standard backtracking search where we enforce arc consistency of all arcs
before every variable assignment. Assume every variable in the CSP has a domain size d > 1.

A B C

D E F

(a) For each of the variable orderings, mark the variables for which backtracking search (with arc consistency
checking) could end up considering more than one different value during the search.

(i) [1 pt] Ordering: A,B,C,D,E, F

� A � B � C � D � E � F

(ii) [1 pt] Ordering: B,D,F,E,C,A

� A � B � C � D � E � F

Since we are enforcing arc consistency before every value assignment, we will only be guaranteed that we won’t
need to backtrack when our remaining variables left to be assign form a tree structure (or a forest of trees).
For the first ordering, after we assign A and B, the nodes C,D,E, F , form a tree. For the second ordering,
after we assign B, the nodes A,C,D,E, F form a tree.

(b) Now assume that an adversary gets to observe which variable ordering you are using, and after doing so, gets to
choose to add one additional binary constraint between any pair of variables in the CSP in order to maximize
the number of variables that backtracking could occur in the worst case. For each of the following variable
orderings, select which additional binary constraint should the adversary add. Then, mark the variables for
which backtracking search (with arc consistency checking) could end up considering more than one different
value during the search when solving the modified CSP.

(i) [2 pts] Ordering: A,B,C,D,E, F

The adversary should add the additional binary constraint:

AC

BF

AE

CD

AF

CE

BD

 DF

When solving the modified CSP with this ordering, backtracking might occur at the following variable(s):

� A � B � C � D � E � F

By adding the edge DF , now only after we assign A,B,C,D, the remaining nodes E,F form a tree.

(ii) [2 pts] Ordering: B,D,F,E,C,A

The adversary should add the additional binary constraint:

AC

BF

AE

CD

AF

 CE

BD

DF

When solving the modified CSP with this ordering, backtracking might occur at the following variable(s):

9

� A � B � C � D � E � F

By adding the edge CE, now only after we assign B,D,F , the remaining nodes A,C,E form a tree.

10

Q5. [7 pts] Best-Case Pruning
For the following zero-sum game trees, the upward pointing triangles represent maximizer nodes, and the downward
pointing triangles represent minimizer nodes. Assume that we expand the children of each node in the game tree
from left to right. For each tree, cross out the maximal set of leaf utility nodes (represented by squares) that can
possibly be pruned with a single assignment of the utility nodes, in order to determine the correct minimax value of
the root of the game tree. You do not need to provide such assignment of the utility nodes.

For a zero-sum game tree with max and min nodes, the pruning condition for a max node is v > β. This pruning
condition can only be satisfied when (1) v is finite (which means we know the value down one branch of that node),
and (2) β is finite, which means that at some min node on path from the current max node to the root of the game
tree, we know the best value that the minimizer can guarantee by taking some branch of that node. Similarly, the
pruning condition for a min node is v < α. This pruning condition can only be satisfied when (1) v is finite (which
means we know the value down one branch of that node), and (2) α is finite, which means that at some max node
on path from the current min node to the root of the game tree, we know the best value that the maximizer can
guarantee by taking some branch of that node.

For the solutions in the following parts, we have labeled the intermediate nodes in the graph.

(a) [2 pts]

A1

B1

C1 C2

X

B2

C3 C4

X X

- It is possible to prune C2’s right branch. After C2 explores its left branch, the value v at C2 will be finite. β would
also be finite since we have explored B1’s left branch and know the best value the minimizer can guarantee at B1 so
far. So we cross out the 4th utility leaf node from the left.

- It is possible to prune B2’s entire right branch. After B2 explores its left branch, the value v at B2 will be
finite. α would also be finite since we have explored A1’s left branch and know the best value the maximizer can
guarantee at A1 so far. So we cross out the last two utility leaf nodes.

(b) [2 pts]

A1

B1

C1 C2

B2

C3

X

C4

X X

11

- It is possible to prune C3’s right branch. After C3 explores its left branch, the value v at C3 will be finite. β would
also be finite since we have explored A1’s left branch and know the best value the minimizer can guarantee at A1 so
far. So we cross out the 6th utility leaf node from the left.

- It is possible to prune B2’s entire right branch. After B2 explores its left branch, the value v at B2 will be
finite. β would also be finite since we have explored A1’s left branch and know the best value the minimizer can
guarantee at A1 so far. So we cross out the last two utility leaf nodes.

(c) [3 pts]

A1

B1

C1 C2

X

B2

C3

X

C4 C5

X

B3

C6

X

C7

X X

- It is possible to prune C2’s right branch. After C2 explores its left branch, the value v at C2 will be finite. β would
also be finite since we have explored B1’s left branch and know the best value the minimizer can guarantee at B1 so
far. So we cross out the 4th utility leaf node from the left.

- It is possible to prune C3’s right branch. After C3 explores its left branch, the value v at C3 will be finite. α
would also be finite since we have explored A1’s left branch and know the best value the maximizer can guarantee
at A1 so far. So we cross out the 6th utility leaf node from the left.

- It is possible to prune C5’s right branch. After C5 explores its left branch, the value v at C5 will be finite. α
would also be finite since we have explored A1’s left branch and know the best value the maximizer can guarantee
at A1 so far. So we cross out the 10th utility leaf node from the left.

- It is possible to prune C6’s right branch. After C6 explores its left branch, the value v at C6 will be finite. α
would also be finite since we have explored A1’s left and middle branches and know the best value the maximizer
can guarantee at A1 so far. So we cross out the 12th utility leaf node from the left.

- It is possible to prune B3’s entire right branch. After B3 explores its left branch, the value v at B2 will be
finite. β would also be finite since we have explored A1’s left and middle branches and know the best value the
maximizer can guarantee at A1 so far. So we cross out the last two utility leaf nodes.

12

Q6. [10 pts] Ghostbusters
Suppose Pacman gets a noisy observation of a ghost’s location for T moves, and then may guess where the ghost
is at timestep T to eat it. To model the problem, you use an HMM, where the ith hidden state is the location of
the ghost at timestep i and the ith evidence variable is the noisy observation of the ghost’s location at time step i.
Assume Pacman always acts rationally.

(a) [2 pts] If Pacman guesses correctly, he gets to eat the ghost resulting in a utility of 20. Otherwise he gets a
utility of 0. If he does not make any guess, he gets a utility of 0.

Which of the following algorithms could Pacman use to determine the ghost’s most likely location at time T?
(Don’t worry about runtime.)

� Variable elimination on the Bayes Net representing the HMM
� Particle filtering with a lot of particles
� Viterbi
� Forward algorithm for HMMs
� None of the above, Pacman should use

We want to find the ghost location XT that maximizes P (XT |e1:T). This can be done by calculating P (XT |e1:T)
using the forward algorithm or variable elimination, and can be estimated using particle filtering. However, it cannot
be calculated using Viterbi (since that maximizes P (X1, · · ·XT |e1:T)).

(b) [2 pts] In the previous part, there was no penalty for guessing. Now, Pacman has to pay 10 utility in order to
try to eat the ghost. Once he pays, he still gets 20 utility for correctly guessing and eating the ghost, and 0
utility for an incorrect guess. Pacman determines that the most likely ghost location at time T is (x, y), and
the probability of that location is p.

What is the expected utility of guessing that the ghost is at (x, y), as a function of p? 20p− 10

With probability p, Pacman is right and gets utility 20, and with probability 1− p he is wrong and gets utility
0. He always pays 10 utility. So the expected utility becomes 20p+ 0(1− p)− 10.

When should Pacman guess that the ghost is at (x, y)?

Never (he should not guess)
If p < .
 If p > 0.5 .
Always

Not guessing has a utility of 0, so Pacman should guess when the expected utility of guessing is > 0, which is
when p > 0.5.

(c) [2 pts] Now, in addition to the −10 utility for trying to eat the ghost, Pacman can also pay 5 utility to learn
the exact location of the ghost. (So, if Pacman pays the 5 utility and eats the ghost, he pays 15 utility and
gains 20 utility for a total of 5 utility.)

When should Pacman pay the 5 utility to find the exact ghost location?

Never
 If p < 0.75 .
If p > .
Always

Paying 5 utility means that Pacman is guaranteed to eat the ghost, getting 20− 10− 5 = 5 utility in total. He
should choose this option when it is better than the other two options (not guessing, or guessing without the
info). This happens when 5 > 0 and 5 > 20p− 10, and thus it would be when p < 0.75.

(d) Now, Pacman can try to eat one out of Blinky (B), Inky (I) and Clyde (C) (three of the ghosts). He has some
preferences about which one to eat, but he’s afraid that his preferences are not rational. Help him out by
showing him a utility function that matches his listed preferences, or mark “Not possible” if no rational utility
function will work. You may choose any real number for each utility value. If “Not possible” is marked,
we will ignore any written utility function.

13

(i) [2 pts] The preferences are B ≺ I and I ≺ C and [0.5, B; 0.5, C] ≺ I

U(B) U(I) U(C)

1 4 5
Not possible

(ii) [2 pts] The preferences are I ≺ B and [0.5, B; 0.5, C] ≺ C and [0.5, B; 0.5, C] ≺ [0.5, B; 0.5, I]

U(B) U(I) U(C)
 Not possible

The second preference implies B ≺ C, the third implies C ≺ I, and so we have I ≺ B ≺ C ≺ I, which is
irrational and no utility function would work.

14

Q7. [6 pts] MDPs
Pacman is in the 3x3 gridworld shown below. In each grid cell, Pacman has 5 actions available: [↑, ↓, ←, →, ◦].
Taking the ◦ action moves Pacman to a special Done state and ends the game. All actions are deterministic. Pacman
is not allowed to take an action into the wall. Otherwise, all actions (including ◦) are available from all grid cells.

For each policy, mark the reward function/discount factor pairs for which the policy is optimal.

1. R1(s, a, s′) =

{
1 s = (0, 0), a = ◦, s′ = Done

0 else

2. R2(s, a, s′) =

{
1 s = (0, 0)

0 else

3. R3(s, a, s′) =

{
2 s′ = Done

1 else

4. R4(s, a, s′) =

{
−3 a = ◦
−1 else

Hint: for any x ∈ R, |x| < 1, we have 1 + x+ x2 + x3 + x4 + · · · = 1/(1− x).

We should first think about what each reward function/discount factor wants us to do on an intuitive level:

1. R1, γ = 0.5: Take action ◦ at s = (0, 0) as soon as possible.

2. R1, γ = 0.9: Take action ◦ at state (0, 0) as soon as possible.

3. R2, γ = 0.5: Take as many actions as possible from state (0, 0).

4. R2, γ = 0.9: Take as many actions as possible from state (0, 0).

5. R3, γ = 0.5: This one is a little tricky. For taking action ◦, our discounted sum of rewards is 2. For never
taking action ◦, our discounted sum of rewards is also 2. Therefore, any policy is optimal for this reward
function/discount factor.

6. R3, γ = 0.9: With a higher discount factor, the optimal policy here is to never take action ◦.

7. R4, γ = 0.5: For taking action ◦, our discount sum of rewards is -3. For never taking action ◦, our discounted
sum of rewards is -2. Therefore, the optimal policy is to never take action ◦.

8. R4, γ = 0.9: Again, taking action ◦ will give us a discounted sum of rewards of -3. Now, never taking action ◦
will give us a discounted sum of rewards of −1 + 0.9(−1) + 0.92(−1) + ... = −1/(1− 0.9) = −9. Therefore, the
optimal policy is to take action ◦ at every grid cell.

(a) [2 pts]

0 1 2

0 ◦ ← ←

1 ↑ ↑ ↑

2 ↑ ↑ ↑

� R1, γ = 0.5 � R1, γ = 0.9

� R2, γ = 0.5 � R2, γ = 0.9

� R3, γ = 0.5 � R3, γ = 0.9

� R4, γ = 0.5 � R4, γ = 0.9

� None of the provided options

15

(b) [2 pts]

0 1 2

0 → ← ←

1 ↑ ↑ ↑

2 ↑ ↑ ↑

� R1, γ = 0.5 � R1, γ = 0.9

� R2, γ = 0.5 � R2, γ = 0.9

� R3, γ = 0.5 � R3, γ = 0.9

� R4, γ = 0.5 � R4, γ = 0.9

� None of the provided options

(c) [2 pts]

0 1 2

0 → → ↓

1 ↑ ← ↓

2 ↑ ← ←

� R1, γ = 0.5 � R1, γ = 0.9

� R2, γ = 0.5 � R2, γ = 0.9

� R3, γ = 0.5 � R3, γ = 0.9

� R4, γ = 0.5 � R4, γ = 0.9

� None of the provided options

16

Q8. [8 pts] RL
Pacman is in an unknown MDP where there are three states [A, B, C] and two actions [Stop, Go]. We are given the
following samples generated from taking actions in the unknown MDP. For the following problems, assume γ = 1
and α = 0.5.

(a) We run Q-learning on the following samples:

s a s’ r
A Go B 2
C Stop A 0
B Stop A -2
B Go C -6
C Go A 2
A Go A -2

What are the estimates for the following Q-values as obtained by Q-learning? All Q-values are initialized to 0.

(i) [2 pts] Q(C, Stop) = 0.5

(ii) [2 pts] Q(C,Go) = 1.5

For this, we only need to consider the following three samples.

Q(A,Go)← (1− α)Q(A,Go) + α(r + γmax
a

Q(B, a)) = 0.5(0) + 0.5(2) = 1

Q(C, Stop)← (1− α)Q(C, Stop) + α(r + γmax
a

Q(A, a)) = 0.5(0) + 0.5(1) = 0.5

Q(C,Go)← (1− α)Q(C,Go) + α(r + γmax
a

Q(A, a)) = 0.5(0) + 0.5(3) = 1.5

(b) For this next part, we will switch to a feature based representation. We will use two features:

• f1(s, a) = 1

• f2(s, a) =

{
1 a = Go

−1 a = Stop

Starting from initial weights of 0, compute the updated weights after observing the following samples:

s a s’ r
A Go B 4
B Stop A 0

What are the weights after the first update? (using the first sample)

(i) [1 pt] w1 = 2

(ii) [1 pt] w2 = 2

Q(A,Go) = w1f1(A,Go) + w2f2(A,Go) = 0

difference = [r +maxaQ(B, a)]−Q(A,Go) = 4

w1 = w1 + α(difference)f1 = 2

w2 = w2 + α(difference)f2 = 2

17

What are the weights after the second update? (using the second sample)

(iii) [1 pt] w1 = 4

(iv) [1 pt] w2 = 0

Q(B,Stop) = w1f1(B,Stop) + w2f2(B,Stop) = 2(1) + 2(−1) = 0

Q(A,Go) = w1f1(A,Go) + w2f2(A,Go) = 2(1) + 2(1) = 4

difference = [r +maxaQ(A, a)]−Q(B,Stop) = [0 + 4]− 0 = 4

w1 = w1 + α(difference)f1 = 4

w2 = w2 + α(difference)f2 = 0

18

Q9. [8 pts] Bayes Net and Decision Networks
(a) [2 pts] We have the following decision network with the conditional probability and utility tables:

B

A

U

B P (B)
0 x
1 1− x

B A U(B,A)

0 +a 10

0 −a 4

1 +a 0

1 −a 8

Suppose that we also know that MEU(B) = 8.5. What is the value of x?

x = 0.25

First, from the definition of MEU , we have:

MEU(B) = P (B = 0)MEU(B = 0) + P (B = 1)MEU(B = 1)

When B = 0, we can either choose A = +a to receive a utility of U(0,+a) = 10, or we can choose A = −a to
receive a utility of U(0,−a) = 4. So we choose A = +a and thus MEU(B = 0) = max(U(0,+a), U(0,−a)) =
10.

When B = 1, we can either choose A = +a to receive a utility of U(1,+a) = 0, or we can choose A = −a to
receive a utility of U(1,−a) = 8. So we choose A = −a and thus MEU(B = 1) = max(U(1,+a), U(1,−a)) = 8.

Substituting these into the above equation, using the parameterization of P (B) above, and using our knowledge
of MEU(B), we have:

8.5 = MEU(B) = x ∗ 10 + (1− x) ∗ 8 = 8 + 2x

and so x = 0.25.

(b) Which of the following decision networks can simultaneously satisfy all of the given VPI and conditional
independence constraints for some setting of conditional probability and utility tables? Mark the box below
each decision network that can satisfy the constraints, or mark None of the above if none of the decision
networks can satisfy the constraints.

(i) [3 pts] V PI(E) > 0, E ⊥⊥ C

B
E

C
D

A

U

B
E

C
D

A

U

B
E

C
D

A

U

B
E

C
D

A

U

� � � �

� None of the above

19

The first decision network can satisfy the constraints V PI(E) > 0 by making U ’s table dependent on the
values of B and A, and making E dependent on B. The constraint E ⊥⊥ C can be satisfied by setting E’s
table to not vary for different values of C (making it independent of C).

In order for the second decision network to satisfy the E ⊥⊥ C constraint, either E must be independent
of B and C, or it must be independent of C and E must be independent of C as well. In either case, E is
now independent of D, which means that V PI(E) = 0. So this network cannot satisfy both constraints.

The third decision network can satisfy the constraints V PI(E) > 0 by making U ’s table dependent on
the values of B and A, and making E dependent on B. The constraint E ⊥⊥ C can be satisfied by setting
E’s table to not vary for different values of C (making it independent of C).

The fourth decision network can satisfy the constraints V PI(E) > 0 by making U ’s table dependent on
the values of D and A, and making E dependent on D. The constraint E ⊥⊥ C can be satisfied by setting
E’s table to not vary for different values of C (making it independent of C).

(ii) [3 pts] V PI(C) > 0, V PI(D|E) = 0, C ⊥⊥ D, C ⊥⊥ E|B

B
E

C
D

A

U

B
E

C
D

A

U

B
E

C
D

A

U

B
E

C
D

A

U

� � � �

� None of the above
The first decision network can satisfy the constraints V PI(C) > 0 by making U ’s table dependent on the

values of B and A, and making B dependent on C. The constraints C ⊥⊥ E|B and C ⊥⊥ D can both be
satisfied by making E’s CPT not dependent on B and C. This allows the network to satisfy the constraint
V PI(D|E) = 0 by making U not vary for different values of D, since D is independent of C and B.

In order for the second decision network to satisfy the C ⊥⊥ D constraint, D’s CPT must not depend on
C. In order for the decision network to satisfy the C ⊥⊥ E|B constraint, E’s CPT must not depend on
C and either B must not depend on C, or B must not depend on D, or E must not depend on D (to
make the path from C to E through B and D inactive). In either case, C is now independent of E, which
means that V PI(C) = 0. So this network cannot satisfy all constraints.

In order for the third decision network to satisfy the C ⊥⊥ D constraint, D’s CPT must not depend on C.
In order for the decision network to satisfy the C ⊥⊥ E|B constraint, either B must not depend on C, or
B must not depend on E (to make the path from C to E through B inactive). In either case, C is now
independent of E, which means that V PI(C) = 0. So this network cannot satisfy all constraints.

The fourth decision network can satisfy the constraints V PI(C) > 0 by making U ’s table dependent on
the values of B and A, and making B dependent on C. The constraints C ⊥⊥ E|B and C ⊥⊥ D can
both be satisfied by making D’s CPT not dependent on B. This makes the network satisfy the constraint
V PI(D|E) = 0 since D ⊥⊥ B|E so the only path to U from D is through E.

20

Q10. [7 pts] DNA Sequencing
Suppose you want to model the problem of DNA sequencing using the following set-up:

• Xi, Yi ∈ {A, T,C,G}

• Xi : ith base of an individual

• Yi : ith base output by DNA sequencer

(a) First, you start by using a standard HMM model, shown below.

. . . Xi−1 Xi Xi+1 . . .

. . . Yi−1 Yi Yi+1 . . .

(i) [1 pt] Which of the following assumptions are made by the above HMM model

� Xi ⊥⊥ Yi+1 | Xi+1 ∀ i
� Xi ⊥⊥ Xj ∀ i 6= j

� Yi ⊥⊥ Yj ∀ i 6= j

� Xi−1 ⊥⊥ Xi+1 | Xi ∀ i
� Xi ⊥⊥ Yj ∀ i 6= j

� None of the provided options.

(b) Now you want to model the quality of your sequencer with a random variable Q, and decide to use the following
modified HMM:

. . . Xi−1 Xi Xi+1 . . .

. . . Yi−1 Yi Yi+1 . . .

Q

(i) [2 pts] Which of the following assumptions are made by the above modified HMM model?

� Xi−1 ⊥⊥ Xi+1 | Xi ∀ i
� Xi ⊥⊥ Xj ∀ i 6= j

� Xi ⊥⊥ Yj ∀ i 6= j

� Yi ⊥⊥ Yj ∀ i 6= j

� Xi ⊥⊥ Yi+1 | Xi+1 ∀ i

� Q ⊥⊥ Xi | Yi ∀ i
� Q ⊥⊥ Xi | Y1, ...YN ∀ i
� Q ⊥⊥ Xi ∀ i
� None of the provided options.

(ii) [2 pts] You observe the sequencer output y1, . . . , yN and want to estimate probability distribution of the
particular sequence of length c starting at base k: P (Xk . . . Xk+c−1 | y1, . . . yN).
Select all elimination orderings which are maximally efficient with respect to the sum of the generated
factors’ sizes.

� X1, . . . , Xk−1, Xk+c, . . . , XN , Q

� Q,X1, . . . , Xk−1, XN , . . . , Xk+c

� X1, . . . , Xk−1, Q,Xk+c, . . . , XN

� X1, . . . , Xk−1, XN , . . . , Xk+c, Q

� Q,X1, . . . , Xk−1, Xk+c, . . . , XN

� X1, . . . , Xk−1, Q,XN , . . . , Xk+c

� None of the provided options:

The most efficient ordering above eliminates Q last because eliminating Q generates a factor that includes
all of the remaining variables. It is more efficient to eliminate from the outside, in because they generate
factors with only 1 variable rather than 2.

(iii) [2 pts] How many entries are in the final conditional probability table P (Xk, . . . , Xk+c−1 | y1, . . . , yN)?
The answer takes the form ab – what are a and b?

21

a = 4 b = c

Each Xi can take on 4 values and there are c variables (the Y ’s are fixed). Therefore, there are 4c entries
in the CPT.

22

Q11. [11 pts] Dynamic Bayes’ Nets
Suppose you have the following Dynamic Bayes Net model, with the associated conditional probability tables (CPTs).

X1

Y1

E1

F1

X2

Y2

E2

F2

X3

Y3

E3

F3

· · ·

· · ·

X1 P(X1)
+x1 0.5
−x1 0.5

Y1 P(Y1)
+y1 0.5
−y1 0.5

Xt Et P(Et | Xt)
+xt +et 0.2
+xt −et 0.8
−xt +et 0.5
−xt −et 0.5

Yt Ft P(Ft | Yt)
+yt +ft 0.4
+yt −ft 0.6
−yt +ft 0.8
−yt −ft 0.2

Xt Yt Xt+1 P(Xt+1 | Xt, Yt)
+xt +yt +xt+1 0.8
+xt +yt −xt+1 0.2
+xt −yt +xt+1 0.5
+xt −yt −xt+1 0.5
−xt +yt +xt+1 0.6
−xt +yt −xt+1 0.4
−xt −yt +xt+1 0.8
−xt −yt −xt+1 0.2

Yt Yt+1 P(Yt+1 | Yt)
+yt +yt+1 0.6
+yt −yt+1 0.4
−yt +yt+1 0.2
−yt −yt+1 0.8

You observe the evidence up to t = 2 as (+e1,−f1,−e2,+f2) and want to infer P (X2, Y2|E1 = +e1, F1 = −f1, E2 =
−e2, F2 = +f2).

Throughout this problem, you may answer as either numeric expressions (e.g. 0.03+0.1∗0.5) or numeric values (e.g.
0.08), or None if you think no result can be obtained based on given information.

(a) [1 pt] Prior Sampling. The following five samples were generated from prior sampling. What is the sample
based estimate of P (Y2 = +y2 | E1 = +e1, F1 = −f1, E2 = −e2, F2 = +f2)?

−x1 −y1 +x2 +y2 +e1 −f1 −e2 +f2
−x1 +y1 +x2 −y2 +e1 −f1 −e2 +f2
+x1 −y1 +x2 +y2 +e1 +f1 −e2 +f2
+x1 +y1 −x2 +y2 +e1 −f1 −e2 +f2
+x1 −y1 −x2 −y2 +e1 −f1 −e2 −f2

Answer: 2/3

Based on rejection sampling, we know the 3rd and 5th sample is not consistent with evidence, thus will
be rejected. Out of three accepted samples, we have two samples with Y2 = +y2, so the estimation of
P (Y2 = +y2 | E1 = +e1, F1 = −f1, E2 = −e2, F2 = +f2) is 2/3.

23

(b) [1 pt] Rejection Sampling. You generate samples of (X1, Y1, X2, Y2, E1, F1, E2, F2), variable by variable. In the
first sample, you have already sampled the first four variables as −x1,−y1,+x2,+y2 and have not yet sampled
(E1, F1, E2, F2). What is the probability of this sample being rejected?

Answer: 1− 0.5 ∗ 0.2 ∗ 0.8 ∗ 0.4 = 0.968

The sample will be accepted if and only if the assignment of (E1, F1, E2, F2) is consistent with evidence. There-
fore, the probability of being accepted is P (E1 = +e1|X1 = −x1)P (F1 = −f1|Y1 = −y1)P (E2 = −e2|X2 =
+x2)P (F2 = +f2|Y2 = +y2) = 0.5 ∗ 0.2 ∗ 0.8 ∗ 0.4 = 0.032. And the probability of being rejected is 1 minus the
probability of being accepted.

(c) Likelihood Weighting. The following two samples were generated with likelihood weighting.

−x1 −y1 +x2 +y2 +e1 −f1 −e2 +f2
−x1 −y1 +x2 −y2 +e1 −f1 −e2 +f2

(i) [1 pt] What is the weight of the first sample?

Answer: 0.5 ∗ 0.2 ∗ 0.8 ∗ 0.4 = 0.032

(ii) [1 pt] What is the weight of the second sample?

Answer: 0.5 ∗ 0.2 ∗ 0.8 ∗ 0.8 = 0.064

(iii) [1 pt] What is the sample-based estimate of P (Y2 = +y2 | E1 = +e1, F1 = −f1, E2 = −e2, F2 = +f2)?

Answer: 0.4/(0.4 + 0.8) = 1/3

Based on likelihood weighting sampling, we know weights for both samples are P (E1|X1)P (F1|Y1)P (E2|X2)P (F2|Y2).
Observe two sample are only different in the value of Y2, we know the estimation of P (Y2 = +y2 | E1 =
+e1, F1 = −f1, E2 = −e2, F2 = +f2) is w1/(w1 + w2) = P (F2 = +f2|Y2 = +y2)/[P (F2 = +f2|Y2 =
+y2) + P (F2 = +f2|Y2 = −y2)] = 0.4/(0.4 + 0.8) = 1/3

(d) [2 pts] Gibbs Sampling. You want to use Gibbs Sampling to estimate P (Y2 = +y2 | E1 = +e1, F1 = −f1, E2 =
−e2, F2 = +f2), choosing to ignore evidence at t = 3 and onward.
The current sample is

−x1 −y1 +x2 +y2 +e1 −f1 −e2 +f2

and the next step is to resample X1, what is the probability that the new assignment to X1 is +x1?

Answer: 0.2/(0.2 + 0.8) = 0.2

Gibbs sampling sample X1 according to distribution P (X1|Y1, X2, Y2, E1, F1, E2, F2)
∝ P (X1, Y1, X2, Y2, E1, F1, E2, F2) ∝ P (X2|X1, Y1)P (E1|X1)P (X1). Given X2 = +x2, Y1 = −y1, E1 = +e1,
we know P (X2 = +x2|X1 = +x1, Y1 = −y1)P (E1 = +e1|X1 = +x1)P (X1 = +x1) = 0.5 ∗ 0.2 ∗ 0.5 and
P (X2 = +x2|X1 = −x1, Y1 = −y1)P (E1 = +e1|X1 = −x1)P (X1 = −x1) = 0.8 ∗ 0.5 ∗ 0.5. The answer follows
by normalizing.

(e) Particle Filtering. You want to estimate P (X2, Y2|E1 = +e1, F1 = −f1, E2 = −e2, F2 = +f2) using particle
filtering.

(i) [1 pt] At t = 1, you have a single particle (X1 = −x1, Y1 = −y1). After passing it through the transition
model, what is the probability of this particle becoming (X2 = +x2, Y2 = +y2)?

24

Answer: 0.8 ∗ 0.2 = 0.16

After passing through the transition model, the probability of new particle is P (X2, Y2|X1, Y1)
= P (X2|X1, Y1)P (Y2|Y1). Thus, P (X2 = +x2|X1 = −x1, Y1 = −y1)P (Y2 = +y2|Y1 = −y1) = 0.8 ∗ 0.2 =
0.16

(ii) [1 pt] Suppose after passing the sample through the transition model, you have the particle: (X2 =
+x2, Y2 = +y2). What is the weight of this particle after the observe update?

Answer: 0.8 ∗ 0.4 = 0.32

The weights of new particle is calculated by P (E2, F2|X2, Y2) = P (E2|X2)P (F2|Y2). which is 0.8 ∗ 0.4.

(f) [2 pts] You now want to estimate P (Xt, Yt|e1:t, f1:t) for some large t. You have limited computational resources
and can either get N samples before rejection for rejection sampling, get N samples with likelihood weighting,
or track of N particles using particle filtering.
Rank these three algorithms, indicating “1” for the algorithm which will give the most accurate sample-based
approximation for P (Xt, Yt|e1:t, f1:t), and “3” for the least accurate.

Rejection Sampling: 3 Likelihood Weighting: 2 Particle Filtering: 1

As t becomes large, rejection sampling will reject samples with high probability, only very limited amount
of samples will be accepted to give a poor estimation. Likelihood weighting sampling is a bit better since
at least every sample is used (never rejected). However, as t goes large, most samples will have extremely
small weights and only a few samples will have reasonably large weights. The sample-based estimation of this
algorithm is effectively only use the samples with large weights, (the contribution of extremely small weight
samples is very little). The resampling mechanism of particle filtering effectively avoid this situation as in each
time step, particles with small weight is resampled with small probability, and the particles remained tend to
always be the one with large weight. Therefore, particle filtering gives the best approximation among the three
algorithms.

25

Q12. [15 pts] Decision Trees and Other Classifiers
(a) Suppose you have a small training data set of four points in distinct loca-

tions, two from the “+” class and two from the “–” class. For each of the
following conditions, draw a particular training data set (of exactly four
points: +, +, –, and –) that satisfy the conditions. If this is impossible,
mark “Not possible”. If “Not possible” is marked, we will ignore any data points.

For example, if the conditions were “A depth-1 decision tree can perfectly classify
the training data points,” an acceptable answer would be the data points to the
right.

�

� �

�
I�

I�

(i) [2 pts] A linear perceptron with a bias term can perfectly classify the training data points, but a linear
perceptron without a bias term cannot.

I�

I�

Not possible

Any four points that are linearly separable, with the separating line clearly not passing through the origin

(ii) [2 pts] A dual perceptron with a quadratic kernel function K(x, z) = (1 + x · z)2 can perfectly classify the
training data points, but a linear perceptron with a bias term cannot.

I�

I�

Not possible

Any four points where one class is “surrounding” the other class – e.g., “– + + –” in a line.

(iii) [2 pts] A depth-2 decision tree can classify the training data points perfectly, but a dual perceptron with
a quadratic kernel function K(x, z) = (1 + x · z)2 cannot.

I�

I�

Not possible

Any configuration of four data points that are alternating, e.g. “– + – +”

(iv) [2 pts] A depth-2 decision tree cannot classify the training data perfectly

26

I�

I�

 Not possible

Not possible, since the points must be in distinct locations.

(b) [2 pts] The plot below shows training instances for two classes (“+” and “-”). You use various methods to train
a classifier between “+” and “-”. You are then given a new point (marked by the “x”) and use the previously
trained systems to classify the new point.

Which of these methods are guaranteed to classify the new point as a “-”?

� Linear SVM (without using a bias term)

� Linear SVM (using a bias term)

� Dual perceptron with K(x, z) = x · z
� Dual perceptron with K(x, z) = x · z + 1

� None of the above

In the above figure, the dotted lines represent the range of linear classifiers that pass through origin while
correctly classifying the data. A linear SVM without bias and dual perceptron classifier with K(x, z) = x · z
will always learn a decision boundary passing through origin and therefore classify the “x” as “-”.

27

A dual perceptron with K(x, z) = x · z + 1 can learn any linear decision boundary, including the solid line
shown, and is therefore not guaranteed to classify the “x” as “-”.
For a linear SVM with a bias term, since it chooses a boundary that maximizes the margin, a decision boundary
like the solid boundary, which correspond to a small margin, will not be learned. Therefore, it also will classify
the “x” as “-”.

(c) [2 pts] Let {xi, yi|i = 1 . . . N} be training examples and their class labels s.t. yi ∈ {−1, 1}. Assume that the
training data is separable when using a linear SVM with an additional bias feature.
For which of these kernel functions is the training data guaranteed to be separable using a dual perceptron?

� K(x, z) = x · z + 1

� K(x, z) = (x · z + 1)2
� K(x, z) = x · z
� None of the options

From the observation that a linear SVM with a bias term separates the data, we know that the data is linearly
separable if we include an additional constant feature in the original feature descriptors.
Dual perceptron with K(x, z) = x · z corresponds to a linear perceptron in original feature space but without
a constant feature - hence it is not guaranteed to perfectly separate the training data.
Dual perceptron with K(x, z) = x · z + 1 corresponds to a linear perceptron in original feature space with a
constant feature - we already know the training data is separable in this space.
Dual perceptron with K(x, z) = (x · z + 1)2 corresponds to a linear perceptron in the quadratic space which
contains within itself the original features, a constant feature (as well as additional terms) i.e. it is more general
than a feature space where training data is known to be linearly separable. Hence, the training data is also
linearly separable in this space.

(d) You are still trying to classify between “+” and “-”, but your two features now can take on only three possible
values, {−1, 0, 1}. You would like to use a Naive Bayes model with the following CPTs:

X P (X)
- 0.4
+ 0.6

X F1 P (F1|X)
- -1 0.4
- 0 0.5
- 1 0.1
+ -1 0.7
+ 0 0.1
+ 1 0.2

X F2 P (F2|X)
- -1 0.1
- 0 0.1
- 1 0.8
+ -1 0.6
+ 0 0.1
+ 1 0.3

(i) [1 pt] If you observe that F1 = −1 and F2 = −1, how will you classify X using Naive Bayes?
X = − X = +

P (F1 = −1, F2 = −1, X = +) = 0.7 ∗ 0.6 ∗ 0.6 > 0.4 ∗ 0.1 ∗ 0.4 = P (F1 = −1, F2 = −1, X = −)

(ii) [1 pt] If you observe that F1 = 0 and F2 = 0, how will you classify X using Naive Bayes?
 X = − # X = +

P (F1 = 0, F2 = 0, X = +) = 0.1 ∗ 0.1 ∗ 0.6 < 0.5 ∗ 0.1 ∗ 0.4 = P (F1 = 0, F2 = 0, X = −)

(iii) [1 pt] If you observe that F1 = 1 and F2 = 1, how will you classify X using Naive Bayes?
X = − X = +

P (F1 = 1, F2 = 1, X = +) = 0.2 ∗ 0.3 ∗ 0.6 > 0.8 ∗ 0.1 ∗ 0.4 = P (F1 = 1, F2 = 1, X = −)

28

THIS PAGE IS INTENTIONALLY LEFT BLANK

