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Introduction to
Artificial Intelligence Final Exam

INSTRUCTIONS

• You have 3 hours.

• The exam is closed book, closed notes except a two-page crib sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.
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Q1. [14 pts] Search
For the following questions, please choose the best answer (only one answer per question). Assume a finite search
space.

(a) [2 pts] Depth-first search can be made to return the same solution as breadth-first search using:

(i) Iterative Deepening

(ii) A closed list/list of nodes that have been expanded

(iii) A heuristic function

(iv) This is not possible

(b) [2 pts] A∗ search can be made to perform a breadth-first search by setting (fill in correct values):

1. for all nodes, heuristic =

2. for all nodes, edgecost =

(c) [2 pts] You run A∗ search using a heuristic function which you know to be admissible and consistent. Your
friend claims he has a search algorithm that is guaranteed to not expand more nodes than your algorithm
(and in fact often expands far fewer in practice). He also tells you that his algorithm is guaranteed to find the
optimal path.

Could the algorithm your friend claims to have exist? (circle one): yes no
Explain:

(d) [2 pts] Depth first search using a closed list/list of nodes that have been expanded is:

(i) Optimal (will find a shortest path to goal)

(ii) Complete (will find a path to goal if at least one exists)

(iii) Both optimal and complete

(iv) Neither optimal nor complete
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Consider a grid, a portion of which is shown below:

You would like to search for paths in this grid. Unlike in Pacman, it is possible to move diagonally as well as
horizontally and vertically. The distance between neighboring grid squares (horizontally or vertically) is 1, and the
distance between diagonally adjacent grid squares is

√
2.

(e) [2 pts] Is the euclidean distance an admissible heuristic? The euclidean distance between two points (x1, y1)
and (x2, y2) is

√
(x2 − x1)2 + (y2 − y1)2.

(f) [2 pts] The Manhattan distance is not an admissible heuristic. Can it be made admissible by adding weights
to the x and y terms? The Manhattan distance between two points (x1, y1) and (x2, y2) is |x2−x1|+ |y2− y1|.
A weighted version with weights α and β would be α|x2 − x1|+ β|y2 − y1|. Specify the (possibly empty) set of
pairs of weights (α, β) such that the weighted Manhattan distance is admissible.

(g) [2 pts] Is the L∞ distance an admissible heuristic? The L∞ distance between two points (x1, y1) and (x2, y2)
is max(|x2 − x1|, |y2 − y1|)
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Q2. [15 pts] Naive Bayes
Your friend claims that he can write an effective Naive Bayes spam detector with only three features: the hour of
the day that the email was received (H ∈ {1, 2, . . . , 24}), whether it contains the word ‘viagra’ (W ∈ {yes,no}), and
whether the email address of the sender is Known in his address book, Seen before in his inbox, or Unseen before
(E ∈ {K,S,U}).

(a) [3 pts] Flesh out the following information about this Bayes net:

Graph structure:

Parameters:

Size of the set of parameters:

Suppose now that you labeled three of the emails in your mailbox to test this idea:

spam or ham? H W E
spam 3 yes S
ham 14 no K
ham 15 no K

(b) [2 pts] Use the three instances to estimate the maximum likelihood parameters.

(c) [2 pts] Using the maximum likelihood parameters, find the predicted class of a new datapoint with H = 3,
W = no, E = U .
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(d) [4 pts] Now use the three to estimating the parameter using Laplace smoothing and k = 2. Do not forget to
smooth both the class prior parameters and the feature values parameters.

(e) [1 pt] Using the parameters obtained with Laplace smoothing, find the predicted class of a new datapoint with
H = 3, W = no, E = U .

(f) [3 pts] You observe that you tend to receive spam emails in batches. In particular, if you receive one spam
message, the next message is more likely to be a spam message as well. Explain a new graphical model which
most naturally captures this phenomena.

Graph structure:

Parameters:

Size of the set of parameters:
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Q3. [15 pts] Hidden Markov Models
Consider the following Hidden Markov Model.

X1

O1

X2

O2

X1 Pr(X1)
0 0.3
1 0.7

Xt Xt+1 Pr(Xt+1|Xt)
0 0 0.4
0 1 0.6
1 0 0.8
1 1 0.2

Xt Ot Pr(Ot|Xt)
0 A 0.9
0 B 0.1
1 A 0.5
1 B 0.5

Suppose that O1 = A and O2 = B is observed.

(a) [3 pts] Use the Forward algorithm to compute the probability distribution Pr(X2, O1 = A,O2 = B). Show your
work. You do not need to evaluate arithmetic expressions involving only numbers.

(b) [3 pts] Use the Viterbi algorithm to compute the maximum probability sequence X1, X2. Show your work.
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For the next two questions, use the specified sequence of random numbers {ai} generated independently and uniformly
at random from [0, 1) to perform sampling. Specifically, to obtain a sample from a distribution over a variable
Y ∈ {0, 1} using the random number ai, pick Y = 0 if ai < Pr(Y = 0), and pick Y = 1 if ai ≥ Pr(Y = 0). Similarly,
to obtain a sample from a distribution over a variable Z ∈ {A,B} using the random number ai, pick Z = A if
ai < Pr(Z = A), and pick Z = B if ai ≥ Pr(Z = A). Use the random numbers {ai} in order starting from a1, using
a new random number each time a sample needs to be obtained.

(c) [3 pts] Use likelihood-weighted sampling to obtain 2 samples from the distribution Pr(X1, X2|O1 = A,O2 = B),
and then use these samples to estimate E[

√
X1 + 3X2|O1 = A,O2 = B].

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

0.134 0.847 0.764 0.255 0.495 0.449 0.652 0.789 0.094 0.028

(d) [2 pts] [true or false] In general, particle filtering using a single particle is equivalent to rejection sampling in
the case that there is no evidence. Explain your answer.

(e) [2 pts] [true or false] Performing particle filtering twice, each time with 50 particles, is equivalent to performing
particle filtering once with 100 particles. Explain your answer.

(f) [2 pts] [true or false] Variable elimination is generally more accurate than the Forward algorithm. Explain your
answer.
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Q4. [13 pts] Machine Learning
(a) [4 pts] Indicate which, if any, of the statements are correct, and explain your answer. Naive Bayes trained using

maximum-likelihood parameter estimation

(i) is guaranteed not to perform worse if more features are added.

(ii) generally performs better on the training set if add-k smoothing is used.

(b) [2 pts] For data points that are not normalized (normalized means that for all data vectors x, ||x|| = 1), we can
implement nearest neighbor classification using the distance metric ||x− y|| defined between two data vectors
x and y to determine the nearest neighbor of each test point. Given a kernel function K(x, y), describe how to
implement a kernelized version of this algorithm. Hint : For a pair of vectors a and b, ||a−b||2 = (a−b) · (a−b).
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(c) [2 pts] Indicate which, if any, of the statements are correct, and explain your answer. Assuming a linearly
separable dataset, Support Vector Machines typically

(i) achieve higher training set accuracy than Perceptrons.

(ii) achieve higher test set accuracy than Perceptrons because SVMs can be used with kernels.

(d) [3 pts] Consider the problem of detecting human faces in images of larger scenes that may contain one or more
faces, or no faces at all. The specific goal is to identify the location and size of each face in an image, rather
than merely determining whether a face is present in the image. Suppose you are given as training data a set of
images in which all of the faces have been labeled (specified as a list of pixel positions for each face). Describe
one approach to solving this problem using binary classification machine learning. Specify what will serve as
training examples for the binary classification algorithm, and how the binary classifier can be used to detect
faces in new images. You don’t need to specify the specific features or classification algorithm to use.

(e) [2 pts] [true or false] In the case of a binary class and all binary features, Naive Bayes is a linear classifier.
Briefly justify your answer.
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Q5. [10 pts] Markov Decision Processes
(a) In the standard MDP formulation, we define the utility of a state-action sequence to be the sum of discounted

rewards obtained from that sequence, i.e.

U+(s0, a0, s1, . . . , an, sn) =
n−1∑
i=0

γiR(si, ai, si+1),

and the goal is to obtain a policy that maximizes the expected utility of the resultant state sequence. Under
this utility function, the optimal policy depends only on the current state and not on any previous states or
actions.

Suppose that we redefine the utility of a state-action sequence to be the maximum reward obtained from that
sequence, i.e.

Umax(s0, a0, s1, . . . , an, sn) =
n−1
max
i=0

R(si, ai, si+1).

We still wish to obtain a policy that maximizes the expected utility of the resultant state sequence.

(i) [3 pts] Show by way of a counter-example that with this modified utility function, the optimal policy does
not depend only on the current state.

(ii) [7 pts] Suppose you are given an arbitrary MDP M = (S,A, T,R) with the modified utility function Umax,
where S denotes the state set, A denotes the action set, T (s, a, s′) denotes the transition probability
function, and R(s, a, s′) denotes the reward function. Define a corresponding MDP M ′ = (S′, A′, T ′, R′, γ′)
with the property that the optimal policy for M ′ under the standard utility function U+ specifies the
optimal policy for M under the modified utility function Umax.
S′ =

A′ =

Transition function:

Reward function:

γ′ =
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Q6. [33 pts] Short answer
Each true/false question is worth 1 point. Leaving a question blank is worth 0 points. Answering incorrectly is
worth −1 point.

(a) For a search problem, the path returned by uniform cost search may change if we

(i) [true or false] rescale all step costs by a scalar α: 0 < α < 1.

(ii) [true or false] rescale all step costs by a scalar α: 1 < α < 2.

(iii) [true or false] add a positive constant C to every step cost.

(b) Assume we are running A∗ graph search with a consistent heuristic h. Let p be the node in the fringe about
to be expanded in the search. When expanding p, we find that exactly one of its children is the goal state G
and the cost of the found path through p to G is K. Let pathcost(p) denote the cost of the path to p that led
to p being inserted in the queue. Then we have that

(i) [true or false] the found path through p to the goal is a shortest path.

(ii) [true or false] the found path through p to the goal is guaranteed to be at most K − pathcost(p) longer
than the shortest path.

(iii) [true or false] the found path through p to the goal is guaranteed to be at most K − pathcost(p)− h(p)
longer than the shortest path.

(iv) [true or false] the found path through p to the goal is guaranteed to be the shortest path going through
p to the goal state.

(c) Consider a zero-sum game adversarial game. The minimizer is played by a computer program that is fast
enough to perform min-max search all the way to the end of the game and it plays according to the thus-found
moves. It is the minimizer’s turn to play, and the minimizer’s computer program returns a win of some positive
value for the minimizer. Then we have that

(i) [true or false] the minimizer is guaranteed to win the game only if the maximizer also plays the min-max
strategy.

(ii) [true or false] the minimizer is guaranteed to win the game only if the maximizer plays a deterministic
strategy.

(iii) [true or false] if the minimizer were to use alpha-beta instead of min-max search then the game could still
end up in a tie.

(iv) [true or false] if the maximizer is known to make moves uniformly at random every other turn, then the
minimizer is not necessarily maximizing pay-off.

(d) Jeremy, Jie, Woody and Alex all get to act in an MDP (S,A, T, γ,R, s0). Jeremy runs value iteration until
he finds V ∗ which satisfies ∀s ∈ S : V ∗(s) = maxa∈A

∑
s′ T (s, a, s′)(R(s, a, s′) + γV ∗(s′)) and acts according

to πJeremy = arg maxa∈A
∑
s′ T (s, a, s′)(R(s, a, s′) + γV ∗(s′)). Jie acts according to an arbitrary policy πJie.

Woody takes Jie’s policy πJie and runs one round of policy iteration to find his policy πWoody. Alex takes
Jeremy’s policy and runs one round of policy iteration to find his policy πAlex. Then we have that

(i) [true or false] there are MDP’s in which Jie would outperform Woody.

(ii) [true or false] there are MDP’s in which Woody would outperform Alex.

(iii) [true or false] there are MDP’s in which Alex would outperform Jeremy.

(iv) [true or false] there are MDP’s in which Jeremy would outperform Alex.

(v) [true or false] there are MDP’s in which Jie would outperform Jeremy.

(e) Bob notices value iteration converges more quickly with smaller γ and rather than using the true discount
factor γ, he decides to use a discount factor of αγ with 0 < α < 1when running value iteration. Then we have
that

(i) [true or false] while Bob will not find the optimal value function, he could simply rescale the values he
finds by 1−γ

1−α to find the optimal value function.

11



(ii) [true or false] if the MDP has zero rewards everywhere, except for a single transition at the goal with a
positive reward, then Bob will still find the optimal policy.

(iii) [true or false] if the MDP’s transition model is deterministic, then Bob will still find the optimal policy.

(iv) [true or false] Bob’s policy will tend to more heavily favor short-term rewards over long-term rewards
compared to the optimal policy.

(f) In the Bayes Net to the right, which of the following conditional independence
assertions are true?

(i) [true or false] A ⊥⊥ E
(ii) [true or false] B ⊥⊥ C|A

(iii) [true or false] F ⊥⊥ C|A
(iv) [true or false] B ⊥⊥ C|A,E

A

B C

DF

E

(g) In variable elimination,

(i) [true or false] when changing a Bayes net by removing a parent from a variable, the maximum factor size
(where size is the number of non-fixed variables involved in the factor) generated during the optimally
ordered variable elimination is reduced by at most 1.

(ii) [true or false] the ordering of variables in variable elimination affects the maximum factor size generated
by at most a factor of two.

(iii) [true or false] the size of factors generated during variable elimination is upper-bounded by twice the size
of the largest conditional probability table in the original Bayes net.

(iv) [true or false] the size of factors generated during variable elimination is the same if we exactly reverse
the elimination ordering.

(h) Consider two particle filtering implementations:

Implementation 1:
Initialize particles by sampling from initial state
distribution and assigning uniform weights.

1. Propagate particles, retaining weights

2. Resample according to weights

3. Weight according to observations

Implementation 2:
Initialize particles by sampling from initial state
distribution.

1. Propagate unweighted particles

2. Weight according to observations

3. Resample according to weights

(i) [true or false] Implementation 2 will typically provide a better approximation of the estimated distribution
than implementation 1.

(ii) [true or false] If the transition model is deterministic then both implementations provide equally good
estimates of the distribution.

(iii) [true or false] If the observation model is deterministic then both implementations provide equally good
estimates of the distribution.

(i) Particle filtering:

(i) [true or false] With a deterministic transition model and a stochastic observation model, as time goes to
infinity, when running a particle filter we will end up with all identical particles.

(ii) [true or false] With a deterministic observation model, all particles might end up having zero weight.
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