
1 Bayes’ Nets

Unfortunately during spring due to illness and allergies, Billy is unable to distinguish the cause (X) of his
symptoms which could be: coughing (C), sneezing (S), and temperature (T). If he is able to determine the
cause with a reasonable accuracy, it would be beneficial for him to take either “Robitussin DM” or Benedryll.
He has asked you to help him formulate his problem as a Bayesian Network. At any point in time, Billy can
either be sick (X = sick), allergic (X = allergic), or well (X = well).

Figure 1: Bayes’ Net

(a) (2 points) List all independence and conditional independence relationships implied by this Bayes’ net.

C⊥T |X
S⊥X|C, T

(b) (2 points) Write the algebraic expression for P (C, S) in terms of the joint distribution P (X,C, T, S).

P (C, S) =
∑

x

∑
t

P (X = x,C, T = t, S)

(c) (2 points) What probability and conditional probability tables must we store for this Bayes’ net?

P (X), P (C|X), P (T |X), P (S|C, T )

(d) (2 points) Derive an expression for the posterior distribution over X given whether Billy is coughing
(C) and sneezing (S).

P (X|C, S) = P (X,C,S)
P (C,S)

=
P

t P (X,C,T=t,S)P
x

P
t P (X=x,C,T=t,S)

It is also correct to rewrite the above using the fact P (X,C, T, S) = P (X)P (C|X)P (T |X)P (S|C, T ).



(e) (2 points) Derive an expression for the likelihood of observing that he is coughing (C) and sneezing
(S) given X.

P (C, S|X) = P (X,C,S)
P (X)

=
P

t P (X,C,T=t,S)

P (X)



2 HMMs

You sometimes get colds, which make you sneeze. You also get allergies, which make you sneeze. Sometimes
you are well, which doesn’t make you sneeze (much). You decide to model the process using the following
HMM, with hidden states X ∈ {well, allergy, cold} and observations E ∈ {sneeze, quiet}.

Figure 2: HMM State Transition Diagram

Figure 3: HMM Probability Tables

(a) (1 point) Fill in the missing entries in the probability tables above.



(b) (2 points) Imagine you observe the sequence quiet, sneeze, sneeze. What is the probability that you
were well all three days and observed these effects?

P (X1 = w,X2 = w,X3 = w|E1 = q, E2 = s, E3 = s)

=
P (X1 = w,X2 = w,X3 = w,E1 = q, E2 = s, E3 = s)

P (E1 = q, E2 = s, E3 = s)

P (X1, X2, X3, E1, E2, E3) = P (X1)P (X2|X1)P (X3|X2)P (E1|X1)P (E2|X2)P (E3|X3)

P (X1 = w,X2 = w,X3 = w,E1 = q, E2 = s, E3 = s) = 0.60 ∗ 0.5 ∗ 0.5 ∗ 0.9 ∗ 0.1 ∗ 0.1 = 0.00135

P (E1 = q, E2 = s, E3 = s) =
∑
x1

∑
x2

∑
x3

P (X1 = x1, X2 = x2, X3 = x3, E1 = q, E2 = s, E3 = s)

P (X1 = w,X2 = w,X3 = w|E1 = q, E2 = s, E3 = s) = 0.00135/P (E1 = q, E2 = s, E3 = s)

(c) (2 points) What is the posterior distribution over your state on day 2 (X2) if E1 = quiet, E2 = sneeze?
This is the filtering problem.

P (X1|E1 = q) ∝ P (X1)P (E1 = q|X1)

Running one step of filtering, we have (in the order of well, allergy, cold):

P (X1|E1 = q) = [0.885 0.041 0.074]

P (X2|E1 = q, E2 = s) ∝ P (X2, E1 = q, E2 = s)
=

∑
x1
P (X2, X1 = x1, E1 = q, E2 = s)

=
∑

x1
P (E2 = s|X2)P (X2|X1 = x1)P (X1 = x1)P (E1 = q|X1 = x1)

= P (E2 = s|X2)
∑

x1
P (X2|X1 = x1)P (X1 = x1)P (E1 = q|X1 = x1)

∝ P (E2 = s|X2)
∑

x1
P (X2|X1 = x1)P (X1 = x1|E1 = q)

Using the equation above, after two steps of filtering, we have

P (X2|E1 = q, E2 = s) = [0.104 0.580 0.316]

(d) (2 points) What is the posterior distribution over your state on day 3 (X3) if E1 = quiet, E2 = sneeze,
E3 = sneeze?

We simply need to compute another step of filtering, using our answer from part (c) above.

P (X3|E1 = q, E2 = s, E3 = s) ∝ P (E3 = s|X3)
∑
x2

P (X3|X2 = x2)P (X2|E1 = q, E2 = s)

After normalizing, we have

P (X3|E1 = q, E2 = s, E3 = s) = [0.077 0.652 0.271]



3 MDPs

Figure 4: MDP

Consider the above MDP, representing a robot on a circular wheel. The wheel is divided into eight states and
the available actions are to move clockwise or counterclockwise. The robot has a poor sense of direction and
will move with probability 0.6 in the intended direction and with probability 0.4 in the opposite direction. All
states have reward zero, except the terminal states which have rewards −1 and +1 as shown. The discount
factor is γ = 0.9.

(5 points) Compute the numeric values of the state-value function V (s) for states s1 through s6 (compute
V (s1), V (s2), ...). Show your work below.

By symmetry, we know that V (s1) = V (s4), V (s2) = V (s5), and V (s3) = V (s6). To compute V (s1), V (s2),
and V (s3), we could use value iteration. However, it is much easier to solve directly using the Bellman
equations. It is clear that the optimal policy is to move toward the +1 reward.

V (s1) = 0.4 ∗ γ ∗ (−1) + 0.6 ∗ γ ∗ V (s2)
V (s2) = 0.4 ∗ γ ∗ V (s1) + 0.6 ∗ γ ∗ V (s3)
V (s3) = 0.4 ∗ γ ∗ V (s2) + 0.6 ∗ γ ∗ (+1)

Solving this system of equations yields

V (s1) = −0.217
V (s2) = 0.265
V (s3) = 0.635



4 More MDPs and Reinforcement Learning

(a) (2 points) What is an ε-greedy policy and why is it important in Q-learning?

An ε-greedy policy in one that chooses the best action argmaxaQ(s, a) with probability 1 − ε and chooses
a random action with probability ε. In Q-learning, such a policy provides the required balance between
exploration and explotation.

(b) (2 points) Why might one want to keep track of an action-value function Q(s, a) rather than a state-
value function V (s)? Can we compute V (s) from Q(s, a)? If so, give an equation. Can we compute Q(s, a)
from V (s)? If so, give an equation.

We might want to keep track of an action-value function Q(s, a) because we can directly obtain a policy
from Q(s, a) (take the action a maximizing Q(s, a) when in state s), without needing to know the transition
model for our environment.

Yes, we can compute V (s) from Q(s, a). V (s) = maxaQ(s, a) in the case that our policy π is to take the
best action. In general, V (s) =

∑
a π(s, a)Q(s, a).

If we don’t know the transition model, then we can’t compute Q(s, a) from V (s). However, if we’re given
the transition model T (s, a, s′), then Q(s, a) =

∑
s′ T (s, a, s′)V (s′).

(c) (2 points) Consider a two-player adversarial zero-sum game. Players MAX and MIN alternate actions
in this MDP. When a transition (s, a, s′) occurs, MAX receives reward R(s, a, s′) and MIN receives reward
R(s, a, s′). MAX attempts to maximize his total rewards and MIN attempts to minimize his total rewards.
Let QMAX(s, a) and QMIN (s, a) denote the q-values for performing action a in state s for players MAX
and MIN, respectively. Given discount factor γ and transition probabilities T (s, a, s′), write two Bellman
equations expressing each of QMAX and QMIN in terms of adjacent lookahead values of QMAX and/or
QMIN .

Since MAX and MIN alternate turns, MAX must take the minimum over the adjacent lookahead value, as
MIN plays next. Similarly, MIN must take the maximum over the adjacent lookahead value.

QMAX(s, a) =
∑
s′

T (s, a, s′)[R(s, a, s′) + γmin
a′

QMIN (s′, a′)]

QMIN (s, a) =
∑
s′

T (s, a, s′)[R(s, a, s′) + γmax
a′

QMAX(s′, a′)]


