CS188, Spring 2004, Midterm1, Russel

You have 50 minutes. The exam is open-book, open-notes. 100 points total. Panic not.

ALL QUESTIONS IN THIS EXAM ARE TRUE/FALSE, MULTIPLE-CHOICE, OR SHORT-ANSWER.

Mark your answers ON THE EXAM ITSELF. Write your name, SID, and section number at the top of each page.

For true/false questions, CIRCLE *True* OR *False*.

For multiple-choice questions, CIRCLE ALL CORRECT CHOICES (in some cases, there may be more than one).

If you are not sure of your answer you may wish to provide a brief explanation.

For official use only

Q.	1 Q.2	Q.3	Q.4	Q.5	Q.6	Total

1. (12 pts) Agents and Environments

- (a) (3) *True/False:* There exist task environments (PEAS) in which some pure reflex agents behave rationally.
- (b) (3) *True/False:* There exist task environments (PEAS) in which all pure reflex agents behave irrationally.
- (c) (3) *True/False:* The input to an agent program is the same as the input to the corresponding agent function.
- (d) (3) *True/False:* Every agent function is implementable by some program/machine combination.

2. (15 pts.) Search

Consider the problem of moving k knights from k starting squares $s_1, ..., s_k$ to k goal squares $g_1, ..., g_k$, on an unbounded chessboard, subject to the rule that no two knights can land on the same square at the same time. Each action consists of moving up to k knights simultaneously. We would like to complete the maneuver in the smallest number of actions.

- (a) (5) What is the maximum branching factor *b* in this state space? (i) 8k (ii) 9k (iii) 8^k (iv) 9^k
- (b) (6) Suppose h_i is an admissible heuristic for the problem of moving knight *i* to goal g_i by itself. Which of the following heuristics are admissible for the k-knight problem?

(i) min{h₁,...,h_k} (ii) max{h₁,...,h_k} (iii) $\sum_{i=1}^{k} h_i$

(c) (4) Which of these is the best heuristic?

(i) min{h₁,...,h_k} (ii) max{h₁,...,h_k} (iii) $\sum_{i=1}^{k} h_i$

3. (25 pts.) CSPS and local search

Consider the problem of placing k knights on an $n \times n$ chessboard such that no two knights are attacking each other, where k is given and $k \le n^2$.

- (a) (5) Choose a CSP formulation. In your formulation, what are the variables?
- (b) (5) What are the values of each variable?
- (c) (5) What sets of variables are constrained, and how?

(d) (5) Now consider the problem of putting *as many knights as possible* on the board without any attacks. We will solve this using local search. Briefly describe in English a sensible successor function.

(e) (5) Briefly describe in English a sensible objective function.

4. (12 pts.) Propositional Logic

Consider a propositional language with four symbols, *A*, *B*, *C*, and *D*. How many models are there for each of the following sentences?

(a) (4) $B \lor C$

(b) (4)
$$\neg A \lor \neg B \lor \neg C \lor \neg D$$

(c) (4)
$$(A \Longrightarrow B) \land A \land \neg B \land C \land D$$

5. (18 pts.) Propositional Logic

According to political pundits, a person who is radical (R) is electable (E) if he/she is conservative (C), but otherwise is not electable.

- (a) (12) Which of the following are correct representations of this assertion? i. $(R \land E) \Leftrightarrow C$
 - ii. $R \Rightarrow (E \Leftrightarrow C)$
 - iii. $R \Rightarrow ((C \Rightarrow E) \lor \neg E)$
- (b) (6) Which of the sentences in (a) can be expressed in Horn form? (i) (ii) (iii)

6. (18 pts.) First-Order Logic

- (a) (12) Which of the following are correct translations of "No two adjacent countries have the same color"?
 - (i) $\forall x, y \neg Country(x) \lor \neg Country(y) \lor \neg Adjacent(x, y) \lor \neg (Color(x) = Color(y)).$
 - (ii) $\forall x, y \ (Country(x) \land Country(y) \land Adjacent(x, y) \land \neg (x = y)) \Rightarrow \neg(Color(x) = Color(y)).$
 - (iii) $\forall x, y \ Country(x) \land Country(y) \land Adjacent(x, y) \land \neg(Color(x) = Color(y)).$
 - (iv) $\forall x, y (Country(x) \land Country(y) \land Adjacent(x, y)) \Rightarrow Color(x \neq y).$

(b) (6) Which of the following are valid sentences?

- (i) $(\exists x \ x=x) \Rightarrow (\forall y \ \exists z \ y=z).$
- (ii) $\forall x P(x) \lor \neg P(x)$.
- (iii) $\forall x \, Smart(x) \lor (x = x)$