1. (10 pts.) True/False

(a) (2) False; a feedforward network has no internal state and hence no memory.
(b) (2) True; both return the "leftmost" among the shallowest solutions.
(c) (2) True; although the solution to an MDP is a policy rather than just the solution path returned by A^{*}, the rest of the policy besides the solution path is irrelevant because those states are never reached.
(d) (2) True; a neural net with enough hidden nodes can represent any Boolean function.
(e) (2) False; the entailment is the other way.
2. (18 pts.) Logic True/false:
(a) (3) True; otherwise we can assign each distinct literal to be false and falsify the clause.
(b) (3) False; $Q(w, A)$ could only resolve against the negative literal $\neg Q(x, F(x))$, leaving a positive literal.
(c) (4) True; $C_{1} \models C_{1} \sigma$ for any σ; if $C_{1} \sigma \subset C_{2}$ then $C_{1} \sigma \models C_{2}$, by the semantics of disjunction.
(d) (4) False; the dreaded $\exists \ldots \Rightarrow \ldots .$.
(e) (4) True; the search tree is linear and finite, and resolution is complete.

3. (14 pts.) Planning and MDPs

(a) (2) Op(Action:TurnOn(b), Precond:Off(b), Effect:On(b) Op(Action:TurnOff(b), Precond:On(b), Effect:
(b) (2) Start with postconditions $O f f(1), O f f(2), O f f(3)$ and End with preconditions $O n(2)$ and $O n(3)$.
(c) (5) The open conditions are $O n(2)$ and $O n(3)$. These are not achieved by Start so a new step must be added. Turn $O n(2)$ and TurnOn(3) are added with preconditions $O f f(2)$ and $O f f(3)$. These are achieved by causal links from Start.
(d) (4) An MDP requires the following: states are all 8 settings of the three bits; actions are all applicable TurnOn and TurnOff actions in each state (3 actions per state but the 2 goal states are absorbing); rewards are + ve $($ say +1$)$ for goal states, -ve for others to ensure shortest solution; transition model is deterministic: Turnon(b) turns the bit b on with probability 1 where applicable.
(e) (1) Just need to remember a policy for all states: if bit 2 is off, turn it on; if bit 3 is off, turn it on.

4. (16 pts.) Probabilistic inference

(a) (3) (ii) is asserted, by the local semantics of BNs: a node is conditionally independent of its nondescendants given its parents. (i) is not asserted since H and S are linked by an arc. (iii) is not asserted by the structure alone, because arcs do not deny independence. (The CPTs can deny it, however.)
(b) (3) $P(h, s, \neg p, \neg e)=P(h) P(s \mid h) P(\neg p \mid h, s) P(\neg e \mid \neg p)=0.1 \times 0.3 \times 0.1 \times 0.9=0.00027$
(c) (4) Probably the simplest way to do this is to construct the part of the full joint for H true (8 rows) and then add up. The following is the enumeration algorithm:

$$
\begin{aligned}
& P(E \mid h)=\alpha P(h) \sum s P(s \mid h) \sum p P(p \mid h, s) P(E \mid p) \\
& \quad=\quad \alpha 0.1[0.3 \times(0.9\langle 0.6,0.4\rangle+0.1\langle 0.1,0.9\rangle)+0.7 \times(0.5\langle 0.6,0.4\rangle+0.5\langle 0.1,0.9\rangle)]=\langle 0.41,0.59\rangle
\end{aligned}
$$

(d) (6) Let's assume honesty doesn't influence fundraising ability, but slickness does. Funds support advertising which increases popularity, but do not directly affect electability otherwise. So L should be a child of S and parent of P. We would need a CPT for $P(L \mid S)$ and an augmented CPT $P(P \mid H, S, L)$. Any CPTs refelcting the abovementioned influences will do.
5. (10 pts.) Vision
(a) (4) (i) A appears bigger and cars are usually roughly similar in size; (ii) since A and B are both on the same horizontal plane and B appears above A , it must be further away.
(b) (6) A, B, C can be viewed in stereo and hence their depths can be measured, allowing the viewer to determine that B is nearest, A and C are equidistant and slightly further away. Neither D nor E can be seen by both cameras, so stereo cannot be used. However, because the bottle occludes D from Y and E from X, D and E must be further away than A, B, C, but their relative depths cannot be determined.

6. ($12+7$ pts.) Robotics

(a) (7) See Fig. 1(a).
(b) (7 extra credit) See Fig. 1(b). Boundaries are loci of arm-obstacle contact, e.g.:

- End of arm against left wall: $x=\cos \theta \Rightarrow$ boundary 1.
- End of arm against top barrier: $2-x=\cos \theta$ for $\theta \in[\pi / 6, \pi / 2] \Rightarrow$ boundary 2 .
- Side of arm against top doorpost: $2-x=0.5 \cot \theta$ for $\theta \in[\pi / 6, \pi / 2] \Rightarrow$ boundary 3 .
(c) (5) An ideal robot could move to $x=1$, rotate to $\theta=0$, move to $x=3$, rotate to $\theta=\pi / 2$. Any real robot would either err on the $x=1$, so that the rotation sticks against the left wall or the barrier, or it err on $\theta=0$, so that the slide to $x=3$ would jam the arm against the barrier. The solution is to use force feedback: move to $1<x<2$; rotate until contact with the barrier; move in $-x$ direction while rotating to maintain sliding contact with barrier until contact is lost (or contact on the opposite side of the arm). Now the arm is in the doorway: slide to $x>3$ maintaining contact with lower doorpost; as soon as this is lost, rotate to $\theta=\pi / 2$, slide until motion stopped by wall.

7. (20 pts.) Learning A 1 -decision list or 1-DL is a decision tree with Boolean inputs in which at least one branch from every attribute test leads immediately to a leaf (obviously the final test leads to two leaves).
(a) (3) Linear tree with attributes a_{1}, a_{2}, a_{3}; leaves are T, T, T, F.
(b) (3) Need to specify 4 weights. By symmetry, w_{1}, w_{2}, w_{3} are the same; say 2. The "lowest" input requiring +1 output is (say) $+1,-1,-1$, giving a weighted sum of -2 . The input requiring output of -1 is $-1,-1,-1$, giving a weighted sum of -6 . Hence a weight $w_{0}=--4$ nicely separates the + ve and -ve cases.
(c) (6) Intuitively, the root of the decision list is the most important, so has the highest weight. If a true attribute requires a false output, then its weight must be negative. Hence $\mathrm{A}=3, \mathrm{~B}=2, \mathrm{C}=1$.
(d) (5) (i) Perceptron learning converges when the data can be represented by the perceptron (see book). (ii) For any DL, there is an equivalent perceptron? Generalizing from the examples in part (c): Essentially, the k th attribute (out of n) along the DL has a weight of $\pm 2^{n-k+1}$, and its sign is determined by the parity of the associated leaf. Then the bias weight w_{0} is set so as to give the right answer for the final leaf; this can always be done.
(e) (3) A decision tree can represent any Boolean function including XOR. Perceptrons cannot represent XOR.

Fig. 1: C-spaces for 6(a) and (b).

