OS 188 Introduction to Al
Fall 1999 Stuart Russell Final Solutions

1. (10 pts.) True/False
(a) (
(b) (

(c) (2) True; although the solution to an MDP is a policy rather than just the solution path returned by A*, the
rest of the policy besides the solution path is irrelevant because those states are never reached.

2) False; a feedforward network has no internal state and hence no memory.
2)

True; both return the “leftmost” among the shallowest solutions.

(d

(2) True; a neural net with enough hidden nodes can represent any Boolean function.

(2) False; the entailment is the other way.
ts.) Logic True/false:

3) True; otherwise we can assign each distinct literal to be false and falsify the clause.
3) False; Q(w, A) could only resolve against the negative literal =Q(z, F'(z)), leaving a positive literal.
4) True; Cy | Cyo for any o; if C1o C Cy then Cro = Ca, by the semantics of disjunction.
4) False; the dreaded 3... = ...
)

4) True; the search tree 1s linear and finite, and resolution is complete.

—~ o~ o~~~ T

ts.) Planning and MDPs

2) Start with postconditions Off(1), Off(2), Off(3) and End with preconditions On(2) and On(3).

(¢) (5) The open conditions are On(2) and On(3). These are not achieved by Start so a new step must be added.
TurnOn(2) and TurnOn(3) are added with preconditions Off(2) and Off(3). These are achieved by causal

links from Start.

(d) (4) An MDP requires the following: states are all 8 settings of the three bits; actions are all applicable
TurnOn and TurnOf f actions in each state (3 actions per state but the 2 goal states are absorbing); rewards
are +ve (say +1) for goal states, -ve for others to ensure shortest solution; transition model is deterministic:
Turnon(b) turns the bit b on with probability 1 where applicable.

(€) (1) Just need to remember a policy for all states: if bit 2 is off, turn it on; if bit 3 is off, turn it on.
4. (16 pts.) Probabilistic inference

(a) (3) (ii) is asserted, by the local semantics of BNs: a node is conditionally independent of its nondescendants
given its parents. (i) is not asserted since H and S are linked by an arc. (iii) is not asserted by the structure
alone, because arcs do not deny independence. (The CPTs can deny it, however.)

(b) (3) P(h,s,—p,—e) = P(h)P(s|h)P(=p|h,s)P(—e|-p)=0.1 x 0.3 x 0.1 x 0.9 =0.00027

(c) (4) Probably the simplest way to do this is to construct the part of the full joint for I true (8 rows) and
then add up. The following is the enumeration algorithm:

P(E|h) = aP(h) Y sP(s|h) Y pP(plh,s)P(Elp)
= o 0.1[0.3 x (0.9(0.6,0.4) + 0.1(0.1,0.9)) + 0.7 x (0.5(0.6,0.4) + 0.5(0.1,0.9))] = (0.41,0.59)

(d) (6) Let’s assume honesty doesn’t influence fundraising ability, but slickness does. Funds support advertising
which increases popularity, but do not directly affect electability otherwise. So L should be a child of S and
parent of P. We would need a CPT for P(L|S) and an augmented CPT P(P|H, S, L). Any CPTs refelcting
the abovementioned influences will do.

5. (10 pts.) Vision

(a) (4) (i) A appears bigger and cars are usually roughly similar in size; (ii) since A and B are both on the same
horizontal plane and B appears above A, it must be further away.

p
(a) (2) Op(AcTiON:TurnOn(b), PRECOND:Off(b), EFFECT:On(b) Op(AcTiON:TurnOff(b), PRECOND:On(b), EFFECT:
(

(b)

(6) A, B, C can be viewed in stereo and hence their depths can be measured, allowing the viewer to determine
that B is nearest, A and C are equidistant and slightly further away. Neither D nor E can be seen by both
cameras, so stereo cannot be used. However, because the bottle occludes D from Y and E from X, D and E
must be further away than A, B, C, but their relative depths cannot be determined.

6. (1247 pts.) Robotics

(a)
(b)

(c)

(7) See Fig. 1(a).

(7 extra credit) See Fig. 1(b). Boundaries are loci of arm—obstacle contact, e.g.:

— End of arm against left wall: x = cos# = boundary 1.

— End of arm against top barrier: 2 — 2 = cos@ for 6 € [r/6,7/2] = boundary 2.

— Side of arm against top doorpost: 2 —x = 0.5cot @ for § € [7/6,7/2] = boundary 3.

(5) An ideal robot could move to z = 1, rotate to § = 0, move to = 3, rotate to 6 = 7/2. Any real robot
would either err on the # = 1, so that the rotation sticks against the left wall or the barrier, or it err on § = 0,
so that the slide to x = 3 would jam the arm against the barrier. The solution is to use force feedback: move
to 1 < # < 2; rotate until contact with the barrier; move in —z direction while rotating to maintain sliding
contact with barrier until contact is lost (or contact on the opposite side of the arm). Now the arm is in the
doorway: slide to > 3 maintaining contact with lower doorpost; as soon as this is lost, rotate to § = 7/2,
slide until motion stopped by wall.

7. (20 pts.) Learning A 1-decision list or 1-DL is a decision tree with Boolean inputs in which at least one branch
from every attribute test leads immediately to a leaf (obviously the final test leads to two leaves).

(a)
(b)

(c)
(d)

(e)

(3) Linear tree with attributes ay, aq, as; leaves are T, T, T, F.

(3) Need to specify 4 weights. By symmetry, wy, ws, ws are the same; say 2. The “lowest” input requiring
+1 output is (say) +1, -1, —1, giving a weighted sum of 2. The input requiring output of -1 is -1, -1, -1,
giving a weighted sum of —6. Hence a weight wg = — — 4 nicely separates the +ve and -ve cases.

(6) Intuitively, the root of the decision list is the most important, so has the highest weight. If a true attribute
requires a false output, then its weight must be negative. Hence A=3, B=2, C=1.

(5) (i) Perceptron learning converges when the data can be represented by the perceptron (see book). (ii)
For any DL, there is an equivalent perceptron? Generalizing from the examples in part (c): Essentially, the
kth attribute (out of n) along the DL has a weight of £2"~*%! and its sign is determined by the parity of
the associated leaf. Then the bias weight wg 1s set so as to give the right answer for the final leaf; this can
always be done.

(3) A decision tree can represent any Boolean function including XOR. Perceptrons cannot represent XOR.

theta

theta

Fig. 1: C-spaces for 6(a) and (b).

