
CS 188 Introduction to AIFall 1999 Stuart Russell Final solutions1. (10 pts.) True/False(a) (2) False; a feedforward network has no internal state and hence no memory.(b) (2) True; both return the \leftmost" among the shallowest solutions.(c) (2) True; although the solution to an MDP is a policy rather than just the solution path returned by A*, therest of the policy besides the solution path is irrelevant because those states are never reached.(d) (2) True; a neural net with enough hidden nodes can represent any Boolean function.(e) (2) False; the entailment is the other way.2. (18 pts.) Logic True/false:(a) (3) True; otherwise we can assign each distinct literal to be false and falsify the clause.(b) (3) False; Q(w;A) could only resolve against the negative literal :Q(x; F (x)), leaving a positive literal.(c) (4) True; C1 j= C1� for any �; if C1� � C2 then C1� j= C2, by the semantics of disjunction.(d) (4) False; the dreaded 9 : : : ) : : :.(e) (4) True; the search tree is linear and �nite, and resolution is complete.3. (14 pts.) Planning and MDPs(a) (2) Op(Action:TurnOn(b);Precond:Off(b);Effect:On(b) Op(Action:TurnOff(b);Precond:On(b);Effect:Off(b)(b) (2) Start with postconditions Off(1), Off(2), Off(3) and End with preconditions On(2) and On(3).(c) (5) The open conditions are On(2) and On(3). These are not achieved by Start so a new step must be added.TurnOn(2) and TurnOn(3) are added with preconditions Off(2) and Off(3). These are achieved by causallinks from Start.(d) (4) An MDP requires the following: states are all 8 settings of the three bits; actions are all applicableTurnOn and TurnOff actions in each state (3 actions per state but the 2 goal states are absorbing); rewardsare +ve (say +1) for goal states, -ve for others to ensure shortest solution; transitionmodel is deterministic:Turnon(b) turns the bit b on with probability 1 where applicable.(e) (1) Just need to remember a policy for all states: if bit 2 is o�, turn it on; if bit 3 is o�, turn it on.4. (16 pts.) Probabilistic inference(a) (3) (ii) is asserted, by the local semantics of BNs: a node is conditionally independent of its nondescendantsgiven its parents. (i) is not asserted since H and S are linked by an arc. (iii) is not asserted by the structurealone, because arcs do not deny independence. (The CPTs can deny it, however.)(b) (3) P (h; s;:p;:e) = P (h)P (sjh)P (:pjh; s)P (:ej:p) = 0:1� 0:3� 0:1� 0:9 = 0:00027(c) (4) Probably the simplest way to do this is to construct the part of the full joint for H true (8 rows) andthen add up. The following is the enumeration algorithm:P (Ejh) = �P (h)X sP (sjh)XpP (pjh; s)P (Ejp)= � 0:1[0:3� (0:9h0:6; 0:4i+ 0:1h0:1; 0:9i)+ 0:7� (0:5h0:6; 0:4i+ 0:5h0:1; 0:9i)] = h0:41; 0:59i(d) (6) Let's assume honesty doesn't in
uence fundraising ability, but slickness does. Funds support advertisingwhich increases popularity, but do not directly a�ect electability otherwise. So L should be a child of S andparent of P . We would need a CPT for P (LjS) and an augmented CPT P (P jH;S; L). Any CPTs refelctingthe abovementioned in
uences will do.5. (10 pts.) Vision(a) (4) (i) A appears bigger and cars are usually roughly similar in size; (ii) since A and B are both on the samehorizontal plane and B appears above A, it must be further away.1



(b) (6) A, B, C can be viewed in stereo and hence their depths can be measured, allowing the viewer to determinethat B is nearest, A and C are equidistant and slightly further away. Neither D nor E can be seen by bothcameras, so stereo cannot be used. However, because the bottle occludes D from Y and E from X, D and Emust be further away than A, B, C, but their relative depths cannot be determined.6. (12+7 pts.) Robotics(a) (7) See Fig. 1(a).(b) (7 extra credit) See Fig. 1(b). Boundaries are loci of arm{obstacle contact, e.g.:{ End of arm against left wall: x = cos � ) boundary 1.{ End of arm against top barrier: 2� x = cos � for � 2 [�=6; �=2] ) boundary 2.{ Side of arm against top doorpost: 2� x = 0:5 cot � for � 2 [�=6; �=2] ) boundary 3.(c) (5) An ideal robot could move to x = 1, rotate to � = 0, move to x = 3, rotate to � = �=2. Any real robotwould either err on the x = 1, so that the rotation sticks against the left wall or the barrier, or it err on � = 0,so that the slide to x = 3 would jam the arm against the barrier. The solution is to use force feedback: moveto 1 < x < 2; rotate until contact with the barrier; move in �x direction while rotating to maintain slidingcontact with barrier until contact is lost (or contact on the opposite side of the arm). Now the arm is in thedoorway: slide to x > 3 maintaining contact with lower doorpost; as soon as this is lost, rotate to � = �=2,slide until motion stopped by wall.7. (20 pts.) LearningA 1{decision list or 1-DL is a decision tree with Boolean inputs in which at least one branchfrom every attribute test leads immediately to a leaf (obviously the �nal test leads to two leaves).(a) (3) Linear tree with attributes a1, a2, a3; leaves are T, T, T, F.(b) (3) Need to specify 4 weights. By symmetry, w1, w2, w3 are the same; say 2. The \lowest" input requiring+1 output is (say) +1, {1, {1, giving a weighted sum of {2. The input requiring output of {1 is {1, {1, {1,giving a weighted sum of {6. Hence a weight w0 = �� 4 nicely separates the +ve and -ve cases.(c) (6) Intuitively, the root of the decision list is the most important, so has the highest weight. If a true attributerequires a false output, then its weight must be negative. Hence A=3, B=2, C=1.(d) (5) (i) Perceptron learning converges when the data can be represented by the perceptron (see book). (ii)For any DL, there is an equivalent perceptron? Generalizing from the examples in part (c): Essentially, thekth attribute (out of n) along the DL has a weight of �2n�k+1, and its sign is determined by the parity ofthe associated leaf. Then the bias weight w0 is set so as to give the right answer for the �nal leaf; this canalways be done.(e) (3) A decision tree can represent any Boolean function including XOR. Perceptrons cannot represent XOR.
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