
CS188 Intro to AIFall 1992 Stuart Russell Midterm solutions1. (15 pts.) De�nitionsProvide brief, precise de�nitions of the following:(a) Completeness: an inference procedure is complete i� all logical entailments of a given theory can be provedby the procedure.(b) Validity: a sentence is valid i� it is true in all possible worlds under all interpretations.(c) Agent: a physical object that can be analysed as having perceptions and producing actions.(d) Procedural attachment: a method for connecting a non-logical solution mechanism to speci�c types ofgoals and assertions in order to speed up theorem-proving or generate side-e�ects.(e) Heuristic search: any search mechanism employing domain-speci�c information to guide the search process(usually, information about the estimated quality of partial solutions).2. (22+3 pts.) Search(a) (3) Termination condition: when the two open lists have a non-empty intersection of states | rememberthat the open lists usually contain nodes, which may di�er on aspects other than the state; if the listsjust contain states, then there is no way to get two di�erent paths from the common state! Once there issome intersection, it only disappears again if the state in common is expanded by one of the two searches.Hence we can get away with checking if the node being expanded is on the other list.(b) (2) Solution extraction: applying get-path to each of the two nodes sharing state, we obtain two halvesof the solution. We need to reverse the path from the goal node and append it to the end of the pathfrom the start node. We also need to make sure that the common node does not appear twice!(c) (2) If we use successors to generate nodes from the goal state, we must be sure that the steps arereversible: i.e., if A is a successor of B then B must be a successor of A.(d) (9) The key issues are:i. Failure occurs if either of the lists becomes empty.ii. For intersection must check states, not nodes.iii. We have to check intersection after each expansion, not after one expansion of both lists (otherwisethe two searches might cross over. Since the expansions are going to alternate, it's easiest to switchthe arguments each time:(defun bds (open1 open2 &optional (inorder? t))(cond ((or (null open1) (null open2)) 'fail)((check-for-solution open1 open2 inorder?))(t (bds open2 (append (cdr open1) (successors (car open1))) (not inorder?)))))(defun check-for-solution (open1 open2 inorder?)(let ((join2 (car (member (car open1) open2 :key #'node-state :test #'equal))))(when join2(let ((join1 (car open1)))(if inorder?(append (get-path join1) (reverse (cdr (get-path join2))))(append (get-path join2) (reverse (cdr (get-path join1)))))))))We weren't too worried about the nitty-gritty details of the solution extraction, which can be ratherannoying, as long as the basic aspects mentioned above appear somewhere.1



(e) (3) Search space: each half has branching factor b and depth d=2, so the total amount of search is roughly2bd=2. Although there is no heuristic information, this is better than breadth-�rst or DFID. How? Becausewe assume the goal state is known, which gives us a big advantage.(f) (3) Heuristic function: the idea is to guide each frontier towards the other. A simple, and acceptable,idea, is to use a heuristic function for each so that h1 estimates the distance to the goal, h2 the distance tothe start. Unfortunately, the two searches might then pass eachother by and end up meeting pretty nearthe start or goal, in which case there is no gain. Since the solution is going to go through some node inthe opposite frontier, a second idea is to estimate the cost to reach the goal/start via one of the nodes inthe opposite frontier. Finding the least cost opposing node to head for is not at all easy to do e�ciently,but appears to be worthwhile in practice.(g) (3, extra credit) Using the latter idea, we can ensure admissibility by ensuring that the estimates ofcomplete path cost are all optimistic, as in A�.3. (10 pts.) LogicRepresent the following sentences in predicate calculus:(a) (2) Calculators contain at least one battery:8c Calculator(c)) 9b Battery(b) ^ PartOf(b; c)(b) (3) All calculators have a 4 button below the 7 button:8c Calculator(c))9b4b7Button(b4) ^Button(b7) ^ PartOf(b4; c) ^ PartOf(b7; c)^Label(b4; 4) ^ Label(b7; 7)^Below(b4; b7)(c) (3) HP calculators are cheaper than Sharp calculators.8hs Calculator(h) ^ Calculator(s) ^Maker(h;HP )^Maker(s; Sharp))< (Price(h); P rice(s))(d) (2) Only nerds have calculators.8xc Owns(x; c)^ Calculator(c)) Nerd(x)4. (11 pts.) Inference(a) (2) Modus Ponens: P; P ) QQ(b) (6) Soundness proof using resolution: obviously to do this we must assume that resolution is sound itself.Use resolution to prove that Q follows from the premises by negating Q, adding to the CNF version ofthe premises. This gives us:(1) P (2) :P _Q (3) :QResolving (2) and (3) we get (4) :P .Resolving (1) and (4) we get the empty clause.(c) (3) Trivially, yes, because we can convert propositional calculus to predicate calculus by adding an emptyargument list () to each proposition symbol; and resolution is complete for predicate calculus.5. (10 pts.) Situation calculus, knowledge representation(a) (6)Some people wrote axioms for actions other than buy, which was interesting. The main things are 1) getthe basic situation calculus stu� right | facts needing a situation argument, and outcomes described byfacts about the result situation; 2) ownership switches; 3) money changes hands. Many people forgot thatyou need money to buy things, the shop no longer owns the object after the sale, or that prices vary fromshop to shop! Some people appear not to have been shopping before, in which case I apologize for anunfair question. One technical representation issue: it's not possible for payment to take place by transferof price(y) from one person to the other; true, some dollars change hands, but the price of the objectcan't be those particular dollars; conversely, if the price is a number rather than some particular dollars,then it makes no sense to say that the shop now owns that number.Here's a straightforwrd way to do it:Price(x; y; p) means x charges price p for object y



Owns(x; y; s) means x owns y in situation sFunds(x;m; s) means x has funds m in situation s.8xyzpmn Owns(z; y; s) ^ Price(z; y; p) ^ Funds(x;m; s)^ � (m; p) ^ Funds(z; n; s))Owns(x; y; result(buy(x; y; z); s))^Funds(x;�(m; p); result(buy(x; y; z); s))^Funds(z;+(n; p); result(buy(x; y; z); s))^:Owns(z; y; result(buy(x; y; z); s))We need frame axioms to make sure that other people's funds, and ownership of all other objects, areunchanged, along with any other situation-dependent predicates there might be.(b) (4) Generally speaking, not much to choose between them since 1) blocks world actions are reversible 2)the branching factor is therefore about the same in both directions. This might not be the case for anincompletely speci�ed goal, though.6. (12 pts.) Games against natureThis question was generally answered pretty well. The answers to part d) were especially good, consideringthat this is a current research issue. Most people in the class seem to have more sense than most AI researchers.(a) (3) Solution plan: in the original solution, each step was a single action. Since the only form of failurehas no side e�ects, we can keep trying again and will eventually succeed. So each step becomes a \loopuntil success" for the same action. (On average, it will take 1=(1� p) tries to make a move.)(b) (2) If we just treat each operator as a \loop until success", then because the average total solution costis the sum of the average step costs, the same algorithm will apply provided we just multiply the g and hcosts by the appropriate amount. In fact, even if we left them untouched the solution returned would bethe same.(c) (3) If each action fails with probability jp (jp < 1), where j is the number on the tile being moved,then we need to recognize that some moves are more expensive. Each step cost going into the g cost ismultiplied by some factor (in fact, 1=(1� jp)) and the h estimates for each tile are multiplied by the samefactor (since the total expected cost to move 3 squares, say, is 3 times the total expected cost to move onesquare).(d) (4) If actions sometimes \mess up" by moving some other adjacent tile into the empty square, then weare in a real bind. Now we can't just keep trying until success, because we might mess up the patterntotally. Since we can observe action outcomes, we can tell when an undesired event has occurred, and tryto undo it. This means our plan has to have a repair action inserted for every step, conditional on thevarious possible failures. Unfortunately, the repairs can fail too, leading us even further away from the\mainline" solution path, so we need repairs for repairs ad in�nitum. If failures are su�ciently unlikely,we could terminate this regress at some point, leaving us with a conditional solution plan that succeedswith high probability.This process is pretty ugly, on the whole, because we have to anticipate so many events that may neveractually occur and each has to be dealt with in its own way. The clean way to think about it is thefollowing. Since, in principle, a sequence of unexpected outcomes can lead us to any state in the statespace, we could just calculate, for each state, what is the right thing to try (the most likely to get us toa solution quickly) and store it. Dynamic programming techniques are designed for this kind of problem;for example, we can build up such a table by starting from the goal state and working back.A more sophisticated approach is to put planning steps into the plan itself. Thus, we could have a mainline plan just as in part a), and conditional branches so that if unexpected results occur, the searchmechanism is reinvoked to solve the new problem that arises. This gives us a plan that's guaranteed towork and doesn't require considering possibilities that don't actually arise. Obviously, we could combinethis mechanism with the ideas in the previous paragraph in various degrees, depending on the failureprobabilities.


