UC Berkeley — Computer Science
CS188: Introduction to Artificial Intelligence
Josh Hug and Adam Janin

Final, Fall 2016

This test has 10 questions worth a total of 100 points, to be completed in 170 minutes. The exam is closed book,

except that you are allowed to use three two-sided hand written cheat sheets. No calculators or other electronic

devices are permitted. Give your answers and show your work in the space provided.

Write the statement out below in the blank provided and sign. You may do this before the exam begins.
Any plagiarism, no matter how minor, will result in an F.

“I have neither given nor received any assistance in the taking of this exam.”
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e There may be partial credit for incomplete answers. Write as much of the solution as you can, but bear in

mind that we may deduct points if your answers are much more complicated than necessary.

There are a lot of problems on this exam. Work through the ones with which you are comfortable first. Do
not get overly captivated by interesting problems or complex corner cases you’re not sure about.
Not all information provided in a problem may be useful.

There are some problems on this exam with a slow brute force approach and a faster, clever
approach. Think before you start calculating with lots of numbers!

Write the last four digits of your SID on each page in case pages get shuffled during scanning.
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1. (7 pts) Naive Bayes - Josh Detector
Suppose we want to find if Josh is in this office (¥ = 1) or not (¥ = 0) by analyzing the measurements of the
following three sensors deployed in his office:

- achair pressure sensor informs you if someone is on his chair (X, = 1) or not (X, = 0)

- amotion detector tells you if someone moves in the room (X, = 1) or not (X, = 0)

- apower meter indicates if someone consumes electricity in the room (X, = 1) or not (X, = 0)

Each sensor above only reveals partial information about Josh’s presence. For instance, if Josh is in his office but
not sitting on the chair, then the chair pressure sensor can not reliably indicate Josh’s presence. Suppose we have
some historical data logs of sensor measurements and Josh’s presence status:

Day 1 2 3 4 5 6 7 8 9 10
X 0 0 0 0 0 1 0 1 0 1
Xm 0 0 0 0 0 0 0 0 1 1
X, 1 1 0 0 1 1 1 1 0 0
Y 0 0 0 0 1 1 1 1 1 1

i. (2 pts) Let us use Naive Bayes to model the sensor measurements and Josh’s presence status as shown in the
Bayes Net model below. Fill in the maximum likelihood estimate (MLE) of each entry in the probability tables.

(B1)
V' 1Py x [padny | |y | x, | Paxan) | | Y | x| PO
0 0o |o 0o |o o |o
1 0o |1 0o |1 0o |1
1 o 1 o 1o
1|1 1|1 1|1
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ii. (1 pt) Suppose we get a new set of sensor observations: X. =0, X,, =0, X, = 1. According to the probability

tables’ maximum likelihood estimate, is Josh more likely to be present or absent?

(O Present (O Absent

(O Equally Likely (O Not Enough Information

iii. (1 pt) Suppose that instead of maximum likelihood, we now use Laplace Smoothing to estimate each entry in
the following probability tables. Assume the prior strengthk = 1.

P(X.[Y)

Yy | p) v lx

0 0o |o

1 0o |1
1o
1|1

iv. (1 pt) What happens to our CPTs as we increase k, i.e. what sort of distribution do we get in the large k limit?

v. (1 pt) Suppose we want to generate exactly two samples from the distribution P(Y, X, X, X)) given by the

CPTs you computed from MLE estimates in part i. Suppose we run Gibbs sampling for a long time so that the

samples are indeed drawn from the correct distribution, and get the resulting sample GS1: (Y =1, X =0,X =1,

X, = 0). Suppose we then generate a new sample GS2 by resampling from P(X [ Y =1, X =0, X =1). What are

the differ *  ssible values for GS2, and how likely is each?
Possible Value #1 for GS2: Y = X, = X, = X, = probability:
Possible Value #2 for GS2: Y = X.= X, = X = probability:
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vi. (1 pt) Suppose we instead use prior sampling to generate samples PS1 and PS2. Which samples are of higher
quality, the two samples generated by Gibbs Sampling or the two samples generated by Prior Sampling? We have
intentionally left “higher quality” undefined. Use your best judgment. For partial credit in the event of a wrong
answer, very briefly explain your answer below.

O GS1 and GS2 are higher quality O PS1 and PS2 are higher quality (O They are the same quality
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2. MDPs [6 pts]

Consider the following Markov Decision Process. Unlike most MDP models where actions have many potential
outcomes of varying probability, assume that the transitions are deterministic, i.e. occur with T(s, a, s’)=100%
probability as shown in the graph below. The reward for each transition is displayed adjacent to each edge:

7\ R(AB)=3 N\ R(B,E)=9

A ~ B

R(B, C) = -2

1
|
A

R(C,D)=6 A 4

i. (3 pts) Compute the following quantities, assuming a discount factor of 1. Recall that V,(s) represents the
expected utility of the state s under the optimal policy assuming the game ends in k more time steps, and V*(s) is
the expected utility starting in state s if we play optimally forever.

Vo) = Vs(4) =
Vi(4) =
Vy(B)= Vs(B)=
V'(B) =

ii. (1 pt) Consider using feature-based Q-learning to learn what the optimal policy should be. Suppose we use the
feature f(s, a) equal to the smallest number of edges from s to E, and feature f,(s, a) equal to the smallest number
of edges from a’s target to E. For example f,(A, —B)is 2, and f,(C, —D)is I.

Let the current weight for these features be [3, 2]. What is the current prediction for Q(C, —D) given these
weights for these two features?
Q(C, —D)=

iii. (2 pts) Suppose we update w based on a single observation of a transition from C to D, assuming o= 0.5.

What is w after updating based on this observation?
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3. Probability (8.5 pts)

Consider the following CPT, to be used for part i only!

A B C P(A, B, C)
+a +b +c 0.15
+a +b -C 0.2

+a -b +c 0.3

+a -b -c 0.1

-a +b +c 0.15

-a +b -c 0

-a -b +c 0.05

-a -b -c 0.05

CS188 FINAL, FALL 2016

1. (2 pts) Compute the following expressions for the table above. Write each answer as a single numerical value. It

is ok to leave your answer as a fraction of decimal numbers.

P(+a|-c) =

P(+b|-a, -c)=
P(-a|+b, +c) =
P(-b, +c | -a) =

ii. (1 pt) Let A, B, and C be binary random variables. Select all of the following CPTs that are guaranteed to have

4 rows for ANY distribution, not the table above.

[]P@B,C|+a)

[]P(+a|B,C)

e

[]P(+a, C|+b)

iil. (2 pts) Select all of the following that are guaranteed to equal 1 for ANY distribution, not the table above.

[N P(+a) + P(-a)

D/I P(+a | -c)P(-c) / (P(+a, -c, +b) + P(+a, -c, -b))
[]P(+a | +b)P(+b) + P(-a | -b)P(-b)
[ P(-c|-a)P(-a) + P(-c | +a)P(+a)
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For parts iv - vi: It’s winter break, and you’re staying at Sherdil’s Casino. Every morning, you receive (as a gift) a
random odd number of gambling chips, C, in the range 1 to k, where k is some odd integer constant, according to
the distribution:

2/(k + 1), ¢ is odd and c € [1, K]

FlEm=g)= { 0, otherwise

Assume the number of chips you receive on a particular day is independent of the number of chips you received
on any and all prior days.

iv. (1 pt) Let the number of chips you receive on days 1, 2, and 3 be Cl1, C2, and C3 respectively. Is C3
conditionally independent of C1 given C2? (Answer yes or no. No explanation is needed.)
Yes No

© ©

v. (1 pt) Suppose k is 5. On average, how many chips can you expect to receive per day?
E[# chips] =

vi. (1.5 pts) Suppose you stay for five days and receive the following chip amounts: {5, 11, 1, 9, 9}. Based on
your five samples, compute the maximum likelihood estimate for £.

MLE ofk =

2016 Most Valuable Goat Celebration Zone
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4. CSPs (8.5 pts)

In the game of Hidato, we start with a partially filled grid with N blanks, and our goal is to fill in all the blanks
with integers 1 through N such that every number is unique, and every number q (except N) appears adjacent to its
successor q + 1, with diagonal moves allowed. For example, if we start from the figure on the left, we can get the
solution on the right. Black squares act as obstacles and never receive numbers.

m H:

14 1 14 1 6 | 5
. 13 | 12 . F
9 1 (10 9 | 8
We can formulate this as a CSP, where the domain of the variables is {1, ..., N}, where N is the number of

non-black (i.e. initially blank) squares.

1. (2.5 pts) If we start from the figure below with 4 variables assigned (to 1, 3, 9, and 14), and run AC-3 (our
arc-consistency algorithm), what values remain in the domain of the variable marked with an X? Assume that all
10 blank squares (including X and Y are unassigned.

T

141 |Y

9
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ii. (2.5 pts) If we assign X=2, and re-run AC-3, what will Y’s domain be after AC-3 completes? Assume that all 9
blank squares (including Y) other than X are unassigned.

iii. (1 pt) If we ensure arc-consistency after every assignment in any Hidato puzzle, we’ll never backtrack.

O True O False

iv. (2.5 pts) Repeat part i, but suppose we run an algorithm that ensures 3-consistency instead of arc-consistency
(recall that arc-consistency is just 2-consistency). In this case, what is the domain of X?

Domain of X:


Rishi Upadhyay


Rishi Upadhyay


Rishi Upadhyay


Rishi Upadhyay


Rishi Upadhyay


Rishi Upadhyay


Rishi Upadhyay


Rishi Upadhyay


Rishi Upadhyay



Last 4 digits of SID: CS188 FINAL, FALL 2016

5. (17 pts) Potpourri
1. (2.5 pts) You are given a choice between the following:
e A random lottery in which you receive either $A or $B uniformly at random.
e An event in which you receive $k, where £ is a positive real-valued constant.
Your utility function for money is U(d) = d* where U (d) is the utility corresponding to d dollars. For what

values of k should you take the lottery? Give your answer as an interval or a union of intervals as appropriate, e.g.,
[12, o] or [5, 9] U [7, ). You may handle ties however you wish. Assume that A, B, and k are non-negative.

k €

For parts ii and iii: Let X, Y , and Z be independent random variables with the following distributions:

X | PWXY) Y | P(Y) Z | P(2)
3| 23 2 | 12 -2| 1/4
-6| 13 10 | 12 6 | 3/4

You can take either action 1 or action 2.
e Action | hasutility U(X,Y,Z)=10*X—-3*Y *xZ
e Action 2 has utility U,(X,Y,Z)=10*X+5%Y =5%Y xZ

ii. (3.5 pts) Calculate the maximum expected utility. Hint, to avoid tedious calculations, recall from your prior
coursework that E[A*B] = E[A]*E[B], so long as A and B are independent variables, and that E[X+Y] = E[X] +
E[Y] for any random variables X and Y.

MEU({}) =

10
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iil. (2 pts) Which variable has the lowest VPI? Justify your answer either in words or numerically. Please restrict
any answers to fewer than 20 words.

O x Oy Oz

11
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iv. (3 pts) You are given a Bayes Net with the four nodes below. The “number of rows” in a Bayes Net is the total
number of rows in all CPTs (including the two-row tables for variables with no incoming edges). Assume all

variables are binary.

Draw 3 edges such that the Bayes Net is valid, and the number of rows in the Bayes Net is smaller than the
number of rows in the full joint table for all four variables.

@
()

©©

12
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Draw 3 edges such that the Bayes Net is valid, and the number of rows in the Bayes Net is larger than the full
joint table.

® ©
® ©

13
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v. (2 pts) Suppose you’re trying to choose a move in a two-player adversarial game by using minimax. Suppose
we use an evaluation function f{s) to evaluate the quality of a state during depth limited search. From the list of
possibilities for g(s) below, which are guaranteed to result in the exact same action as if we used f{s) instead?

You may assume that all else is equal (including any tie-breaking scheme) except the evaluation functions. You
may assume that f{s) is always positive.

[ g(s)=/(s)+10
O g(s)=5/(s)
O g(s) =)
O g(s)=logf(s)

vi. (2 pts) Now suppose you’re using expectimax instead of minimax to choose a move. From the list of
possibilities for g(s) below, which are guaranteed to result in the exact same action as if we used f{s) instead?

Again, you may assume everything except the evaluation functions is the same, and that f{s) returns a positive
value.

[ g6s)=f(s)+10
O &) =5/s)
[a(s) =f(s)’
[Jg(s) = logf(s)

14
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vii. (2 pts) Suppose we are running depth 1 expectimax, and know that our evaluation function always returns a
value between B and T, where B < T. For what values of B and T can we perform the pruning step as shown
below? Assume that all chance outcomes are equally likely.

12 6 2

15
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6. MDPs and RL for Solving Adversarial Games (14 pts)

Consider the problem of using an MDP to develop a strategy to maximize a player’s reward in a game called The
Downward Spiral. The game starts with both players having an “elevation” of zero. A game consists of N
rounds, where each round consists of a turn by player 1, followed by a turn by player 2. After N rounds, the game
is over. During each turn:

e A player may “pass” or “move”.

e Ifaplayer “passes”, their elevation is unchanged.

e Ifaplayer “moves”, then their elevation increases by 1 with probability 0.25, and decreases by 1 with

probability 0.75. Moving only changes the elevation of the active player.

Part 1: Suppose that player 1’s utility is equal to the number of times that they end a round with a strictly
higher elevation than player 2. One approach is to model the game’s state as a pair of values representing the
elevation of each player, i.e. S is always equal to [0, 0]. After one round, suppose player 1 passes, and player 2
moves and goes down, then the new state is Sy = [0, -1]. To account for player 1’s goal, our model has a reward
function such that player 1 earns a reward of 1 point for ending the round with a higher elevation. So in the
example above R(S,, pass, Sy) = 1, since the round ended with player 1 having a higher elevation. Throughout the
problem, let the discount factor be 1.

i. (3 pts) Player 1 will use an MDP model to decide what actions to take to maximize their rewards. Fill in the
MDP search tree below for the game assuming that the chance of heads is 0.25, that the model predicts player 2
will randomly pick pass/flip with p=0.5 and the game lasts only one round (N = 1). Label transitions with their
reward and probability. Label states with the appropriate pair of values [x, y]. The starting state and Q-states are
drawn for you. Only the edges and states below the left g-state ([0, 0], “pass”) will be graded.

[0,0]

([0, 0], “pass”) ([0, 0], “move”)

16
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ii. (1 pt) In the entire MDP search tree from part i (including the side of the tree that you were not required to
draw), what is the exact value of the smallest transition probability?

iii. (2 pts) Let N =2 rounds. Let Z be the number of transitions in the entire MDP. How many total transitions are
there? Give an exact answer. By transition, we mean an edge from a Q-state to a state.

7=

iv. (1 pt) Suppose we want to use model-based reinforcement learning to approximate player 2’s strategy rather
than assuming that they choose randomly. Assume that they have some sort of consistent, but not necessarily
deterministic strategy. Assuming there are Z transitions, how many T(s, a, s’) values do we need to learn? Again
assume that N =2. You can do this problem even if you didn’t do part 1-ii. If the problem seems ambiguous, state

your assumptions.

Number of T(s, a, s”) values to learn =

17
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v. (1 pt) Same as part iii, but how many R(s, a, s”) values do we need to learn? If ambiguous, state assumptions.
Number of R(s, a, s’) values to learn =

Part 2) Suppose we keep the rules of The Downward Spiral the same, but change player 1’s utility to be equal to
their elevation at the end of round N, with no regard to player 2’s elevation. This means adjusting our state

space as well as reward function. Note: You can do this problem without doing part 1.

vi. (1 pt) Give a minimal representation of the state needed to achieve this new goal, and provide S,. Hint: Player
2’s actions no longer matter.

vii. (3 pts) Draw the entire MDP search tree for the game assuming N = 1. Make sure to label the probabilities and
rewards for each transition for round 0, as well as the possible states for round 0 and round 1.

0]

(0], “move?) ([0], “pass’)

18
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viil. (2 pt) If N = 10, give the expected utility V*(S,) achieved under the optimal policy for this new MDP.
Describe the optimal policy.

19
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7. Where is Question Goat? (9 pts)

Question Goat is wandering around between positions A, B, C and D below. Question Goat’s location at time t is
X,. At each time step, Question Goat moves clockwise [e.g. A — B, B — D, etc.] with probability 0.8, moves
counterclockwise with probability 0.1, and stays at the same position with probability 0.1. To track down
Question Goat’s position, we deploy two sensors in the East (E) and South (S). The measurements of sensors E
and S at time t are Y and Y, respectively. The distribution of sensor measurements are determined by the
Manhattan distance between QG and the sensor. QG’s Manhattan distance to sensor S is given by dg and QG’s
Manhattan distance to sensor E is given by d;, e.g. QG at B yields dg = 3, d;= 1. The measurement model of the
sensors is given in the tables below. Essentially, as QG gets closer to a sensor, its chance of being on increases.

Al B Y, POV 1) | | Ys P(Y,] d)
C D 0 0.2d, 0 0.3 dg
1 1-02d, 1 1-0.3d,

1. (2 pts) Let us find Question Goat’s location by particle filtering with 4 particles. Suppose at ¢t = 33, the particles
we have are XV=A, X®=B, X®=C, X“=D. What is the probability that the particles are X'""=B, X?=A, X®=D,
X®=D after completion of the time elapsing step in particle filtering?

Probability:

ii. (2 pts) Assume the time elapse step yields X"=B, X?=A, X®=D, X¥=D. Assume the sensor measurements at
t =34 are Y= 0 and Y = 1. What are the unnormalized particle weights given these observations?

Particle | Weights
XO=B | wh=
XO=A | w@=
XO=p | wO=
X9=p | w®=

20
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iii. (3 pts) Given the weights in part (b), what is the probability that the particles are resampled as X'=A, X?=D,
X®=B, and X“=B at time t=34? You do not need to calculate the probability as a number. Instead, represent your
solution in terms of w'", w'?, w®, w®.

iv. (2 pts) If the sensors were malfunctioning at ¢ = 34, i.e., no observations are produced, what is the probability
that the original set of particles XV=A, X®=B, X®'=C, X=D are resampled as X""=B, X?=A, X®=D, X“=D?
Probability:

21
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8. Perceptrons and Neurons (9 pts, 1 pt each)

After a single weight update on a single incorrectly classified sample, a binary perceptron correctly classifies that
sample: O Always O Sometimes (O Never

After a single weight update, the accuracy of a perceptron over the entire training set (check all that apply):

|:| Can get better |:| Can get worse |:| Can stay the same

In a binary perceptron, if a feature vector for a sample is exactly equal to the weight vector, the sample will be
classified as part of the positive class. Assume the feature vector is not all zeros.
OAlways (O Sometimes (O Never

In a multiclass perceptron, if a feature vector for a sample is exactly equal to the weight vector for some class, the
sample will be classified as part of that class. Assume the feature vector is not all zeros.
O Always O Sometimes (O Never

The decision boundary for a binary perceptron is linear in the feature space.
OAlways (O Sometimes (O Never

22
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Suppose we are trying to classify the “habitable” zone around a star in a 2D universe. The data is shown below,
where X denotes belonging to the habitable zone, and O is not part of the habitable zone.

o
P
Fe O ‘Q\O
o 7 o N
/% / o N\ \
L o /| Jo
"N o s
0 N\ XN P o
X X _“0o
o I

A binary perceptron with the right weights would correctly classify all planets shown. Assume you can have any
features you want.

O True (O False

On Project 6, you built a neural network of only a single two-class neuron with a logistic activation function that
classified a sample as belonging to the positive class if its activation was greater than 0.5. The decision boundary

for this neuron was linear in the feature space.
O Always O Sometimes (O Never

A single two-class neuron as implemented in Project 6 (and described above) would be able to correctly classify
the planetary data from above. Assume you can have any features you want.

O True (O False

The training data for Project 6 featured handwritten digits that were all about the same size. However, if you
hand-wrote a single much smaller “5” and fed it to the classify method (using the same training data as in the
project, and assuming the handwritten digit was appropriately converted into a 28x28 pixel format)), it would still
probably be classified correctly.

O True (OFalse
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9. Deep Learning (10.5 pts)
Consider the neural network below. Note that:
® X, ascalar, is the input. a,, also a scalar, is the output.
Each a, value is the final output for neuron i in the network.
Each z, value is the pre-activation value for neuron i in the network (i.e. the dot product).
w, is the weight used by neuron 1.
Let w;; be the weight from neuron i to neuron j.
The activation function for each neuron is the function g(x) = ¢*.

L(y, a,) is the loss function. It is (y - a,)°, where y is the training label.

«—(1] (4)—=

1. (2.5 pts) Use the Chain Rule and the equations given to calculate 0L/0z, . You may use x and y, along with all

of the w, a, and z values. Note that the picture above only shows the neural network, i.e. does not include the loss
function L.

1. (1.5 pts) Use the Chain Rule and the equations given to calculate 0L/0z,. You may use x and y, along with all
of the w, a, and z values. (Hint: If you’re comfortable with the Chain Rule, you should be able to do this quickly
by looking at your solution to Part A.)
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iii. (2.5 pts) Use the Chain Rule and the equations given to calculate 0L/Ow, . You may use x and y, along with all
of the w, a, and z values. NOTE: You can use the symbols 0L/0z, and 0OL/Oz; in your answer, since you

calculated their values above. This is highly recommended.

iv. (1 pt) Suppose we’re using stochastic gradient descent. What values will be updated based on the partial you
computed in part iii, i.e. OL/Ow, ? Check all that apply.

Chw, [Iw,, [wy, [Jw, [wy, [Ix
v. (1 pt) Suppose we’re using mini-batching instead of stochastic gradient descent. What values will be updated
based on the computation of 0L/0w, ? Check all that apply.

I:h W CIw,, Dwu [ Iw,, DW34 [x

vi. (1 pt) What is the main difference between mini-batching and stochastic gradient descent? Describe in 10
words or less. Answers with more than 10 words will receive no credit.

vii. (1 pt) We can think of backpropagation as a graph traversal over a computational graph. To ensure that all
values are available at the time they are needed, only some traversals are accurate. There are some orderings of
nodes/neurons that we must use for maximum efficiency. For this particular network, select all such orderings
that apply.

[]BFS ordering, starting from a,

[ ] DFS ordering, starting from a,

[ ]UCS ordering, starting from a, and all edge weights are 188.

[ BFS ordering, starting from a, and flipping all edge directions

[ ] DFS ordering, starting from a, and flipping all edge directions

[ UCS ordering, starting from a,, flipping all edges, and all edge weights are 188.
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10. Pacmanian Speech Recognition (10.5 pts)'

As Adam taught during his lecture, one common approach for converting sound files to words (speech
recognition) is to first featurize the sound file by converting each 10 millisecond segment into 13 binned “spectral
energies”, which are essentially how strong the low frequency, medium frequency, etc. parts of the signal are for
each 10 millisecond segment.

For this problem, the notation for our features is F (i) where t ranges from 0 to the number of frames in the audio
file and i ranges from 0 to 12. For example, if we are processing a 1 second clip, we’d have F (i) through F(i),
for a total of 1300 features. If F(0) = 2.3, that means the very low frequency component of the sound clip starting
at 50ms and ending at 60ms had an energy of 2.3 in some arbitrary unit.

Suppose throughout this problem that Pacmanian has 20 different sounds, a.k.a. “phonemes” that occur with
exactly equal probability. Each word in Pacmanian is composed of a sequence of one or more phonemes. For
example, the word “waka” is composed of the phonemes /w/, /a/, /k/, /a/.

Part 1: The first step of our speech processing algorithm is to build a model for how likely each phoneme is,
given a sound segment. For example, our model might predict that F,(i), the sound segment between 50ms and
60ms, had a 40% percent chance of being a /w/, a 20% percent chance of being a /y/, etc.

To do this, we can build a neural network that takes in all 13 binned energies for a particular time segment, and
which has 20 outputs that use a softmax activation function.

The notation for the outputs of the neural network is N (i), where t is the frame number and i ranges from 0 to 19.
N;(0) is for /a/ at time 15, N, (1) is for /b/ at time 31, etc.

In other words we build a classifier that takes a sound clip (13 energy values) and outputs 20 values (one for each
possible phoneme), where N (i) represents how likely the sound at timestep t is actually phoneme number i.

i. (2 pts) For each of the following expressions, indicate if it is Always True, Sometimes True, or Never True for
all values of't, 1, and k. Mark “Sometimes” even if the chance is very small.

Always Sometimes Never | Reason

0 <=N(i) <= 1.0 O O O

Z N.(i) = 1.0 O © ©

N,(0) > N,(1) O O O
F (i) =N() O O O

' | know there were some complaints about wordy problems, but | felt this problem was too hard without
reexplaining at least some of Adam’s lecture. With a strong enough 188 foundation, you can do this problem
without having deeply understood Adam’s lecture.
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Part 2: One way to try to detect words is to build an HMM for each possible word. The state transition diagram
for the HMM is shown below, where state i is the ith phoneme of the word, and T;; is the probability of moving
from state i to state j. For example, for the word waka, we might assume that there is a 20% chance that that a
speaker saying the /a/ sound keeps making that sound 10 ms later, and an 80% chance that they move on to the
/k/ sound. In that case, T, would be 0.2 and T, , would be 0.8. T, , represents the speaker finishes the word. If
you’d like, you can think of the terminal state is the speaker being silent.

Wi, T, fal, T, K, T, al, T, ,

fak 1.

34

ii. (2.5 pts) Fill in the table, similar to what you did in part i. Mark “Sometimes” even if the chance is very small.

Always Sometimes Never | Reason
0<=T, <= 1.0 O O O
Ty, + Ty = 1.0 O O O
Ty, + T+ Ty = 1.0 O O O
T, >T,, O O O
T,,>T;, O O O

Part 3: Suppose we have a sound file containing a single word. Suppose this sound file is S samples long, has 13
bins of spectral energy, and that Pacmanian has 20 phonemes. For iii through vi, suppose that we want to use
our HMM from above to determine whether the word is “waka”.

iii. (2 pts) How many hidden variables must our HMM have? Recall that an HMM is just a Bayes Net with a
special structure.
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iv. (2 pts) If q, is our 5th hidden variable, and q, is our 6th hidden variable, how many rows does P(q; | q5) have?
If the problem seems ambiguous, make sure to state your assumptions.

v. (2 pt) For each hidden variable, how many scalar evidence values are there?
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