
NAME: SID#: Login: Sec: 1

CS 188 Introduction to
Fall 2007 Artificial Intelligence Midterm Solutions
You have 80 minutes. The exam is closed book, closed notes except a one-page crib sheet, basic calculators only. 80
points total. Don’t panic!

Mark your answers ON THE EXAM ITSELF. Write your name, SID, login, and section number at the top of each
page.

For true/false questions, CIRCLE True OR False.

If you are not sure of your answer you may wish to provide a brief explanation. All short answer sections can be
successfully answered in a few sentences at most.

1. (18 points.) True/False

(a) True/False: If one search heuristic h1(s) is admissible and another one h2(s) is inadmissible, then h3(s) =
min(h1(s), h2(s)) will be admissible.
True. h3(s) ≤ h1(s) ≤ h∗(s).

(b) True/False: Greedy search has the same worst-case number of node expansions as DFS.
True. Both can expand the entire state space. With h(s) = 0, greedy might behave exactly like DFS.

(c) True/False: In A*, the first path to the goal which is added to the fringe will always be optimal.
False. The first path removed from the fringe is optimal with an admissible heuristic.

(d) True/False: If a CSP is arc consistent, it can be solved without backtracking.
False. Arc consistency may not determine the entire solution.

(e) True/False: A CSP with only binary constraints can be solved in time polynomial in n and d, the number
of variables and size of the domains.
False. Binary CSPs are NP-hard. You may assume P is NP.

(f) True/False: The minimax value of a state is always less than or equal to the expectimax value of that
state.
True. Expectimax allows for suboptimal behavior from minimizing agents, which can only raise the value
of a node in the game tree.

(g) True/False: Alpha-beta pruning can alter the computed minimax value of the root of a game search tree.
False. Alpha-beta pruning only speeds up computation; it does not change the answer.

(h) True/False: When doing alpha-beta pruning on a game tree which is traversed from left to right, the
leftmost branch will never be pruned.
True. There are no alternatives to motivate pruning at the left-most branch of a game tree.

(i) True/False: Every search problem can be expressed as an MDP with at most as many states as the original
search problem.
True. Search problems are MDPs with deterministic transitions, a terminal state, negative rewards, and
no discount rate.

2

2. (18 points.) Search and Heuristics

Imagine a car-like agent wishes to exit a maze like the one shown below:

The agent is directional and at all times faces some direction d ∈ (N, S, E, W). With a single action, the agent
can either move forward at an adjustable velocity v or turn. The turning actions are left and right, which
change the agent’s direction by 90 degrees. Turning is only permitted when the velocity is zero (and leaves it
at zero). The moving actions are fast and slow. Fast increments the velocity by 1 and slow decrements the
velocity by 1; in both cases the agent then moves a number of squares equal to its NEW adjusted velocity. Any
action which would collide with a wall crashes the agent and is illegal. Any action which would reduce v below
0 or above a maximum speed Vmax is also illegal. The agent’s goal is to find a plan which parks it (stationary)
on the exit square using as few actions (time steps) as possible.

As an example: if the agent shown were initially stationary, it might first turn to the east using (right), then
move one square east using fast, then two more squares east using fast again. The agent will of course have to
slow to turn.

(a) (3 points) If the grid is M by N , what is the size of the state space? Justify your answer. You should
assume that all configurations are reachable from the start state.

M ×N × 4× (Vmax + 1)

The state is specified by the position, direction and velocity.

(b) (2 points) What is the maximum branching factor of this problem? You may assume that illegal actions
are simply not returned by the successor function. Briefly justify your answer.

3 is the maximum branching factor. When stopped, the agent can turn left, turn right, or go fast.

(c) (3 points) Is the Manhattan distance from the agent’s location to the exit’s location admissible? Why or
why not?

Manhattan distance is not admissible because the agent can travel faster than 1 square per move.

NAME: SID#: Login: Sec: 3

(d) (4 points) State and justify a non-trivial admissible heuristic for this problem which is not the Manhattan
distance to the exit.

(a) Manhattan distance divided by Vmax

(b) Current velocity

(e) (2 points) If we used an inadmissible heuristic in A* tree search, could it change the completeness of the
search?

An inadmissible heuristic will not change completeness.

(f) (2 points) If we used an inadmissible heuristic in A* tree search, could it change the optimality of the
search?

An inadmissible heuristic does not imply optimality, so a suboptimal solution could be found.

(g) (2 points) Give a general advantage that an inadmissible heuristic might have over admissible one.

Inadmissible heuristics often find solutions faster (expanding fewer nodes), although those solutions need not
be optimal.

4

3. (16 points.) Game Search

The standard Minimax algorithm calculates worst-case values in a zero-sum two player game, i.e. a game in
which for all terminal states s, the utilities for players A (MAX) and B (MIN) obey UA(s)+UB(s) = 0. In the
zero sum case, we know that UA(s) = −UB(s) and so we can think of player B as simply minimizing UA(s).

In this problem, you will consider the non zero-sum generalization in which the sum of the two players’ utilities
are not necessarily zero. Because player A’s utility no longer determines player B’s utility exactly, the leaf
utilities are written as pairs (UA, UB), with the first and second component indicating the utility of that leaf to
A and B respectively. In this generalized setting, A seeks to maximize UA, the first component, while B seeks
to maximize UB , the second component.

(1,1) (-1,2) (-1,3)

(1,1)

(a) (4 points) Propagate the terminal utility pairs up the tree using the appropriate generalization of the
minimax algorithm on this game tree. Fill in the values (as pairs) at each of the internal node. Assume that
each player maximizes their own utility. Hint: just as in minimax, the utility pair for a node is the utility pair
of one of its children.

(b) (2 points) Briefly explain why no alpha-beta style pruning is possible in the general non-zero sum case.
Hint: think first about the case where UA(s) = UB(s) for all nodes.

The values that the first and second player are trying to maximize are independent, so we no longer have
situations where we know that one player will never let another player down the branch of the game tree. For
instance, in the case where UA(s) = UB(s), this problem reduces to searching for the max valued leaf, which
could appear anywhere in the tree.

NAME: SID#: Login: Sec: 5

For minimax, we know that the value v computed at the root (say for player A = MAX) is a worse-case value,
in the sense that, if the opponent MIN doesn’t act optimally, the actual outcome v′ for MAX can only be
better, never worse, than v.

(c) (3 points) In the general non-zero sum setup, can we say that the value UA computed at the root for
player A is also a worst-case value in this sense, or can A’s outcome be worse than the computed UA if B plays
suboptimally? Briefly justify.

A’s outcome can be worse than the computed UA. For instance, in the example game, if B chooses (-2,0) over
(-1,2), then A’s outcome will decrease from 1 to -1.

Now consider the nearly zero sum case, in which |UA(s) + UB(s)| ≤ ε at all terminal nodes s for some ε which
is known in advance. For example, the previous game tree is nearly zero sum for ε = 2.

(d) (3 points) In the nearly zero sum case, pruning is possible. Draw an X in each node in this game tree
which could be pruned with the appropriate generalization of alpha-beta pruning. Assume that the exploration
is being done in the standard left to right depth-first order and the value of ε is known to be 2. Make sure you
make use of ε in your reasoning.

(e) (2 points) Give a general condition under which a child n of a B node (MIN node) b can be pruned. Your
condition should generalize α-pruning and should be stated in terms of quantities such as the utilities UA(s)
and/or UB(s) of relevant nodes s in the game tree, the bound ε, and so on. Do not worry about ties.

Ub > ε− α

(f) (3 points) In the nearly zero sum case with bound ε, what guarantee, if any, can we make for the actual
outcome u′ for player A (in terms of the value UA of the root) in the case where player B acts suboptimally?

u′ ≥ UA − 2ε

6

4. (15 points.) MDPs and Reinforcement Learning

In Flipper’s Folly, a player tries to predict the total number of heads in two coin flips. The game proceeds as
follows (also shown below):

(a) From the start state (XX), choose the special action begin (only possible action)

(b) Flip a coin and observe the result, arriving in the state HX or TX

(c) Guess what the total number of heads will be: a ∈ {0, 1, 2}
(d) Flip a coin and observe the result, arriving in one of the states HH, HT, TH, TT.

(e) Count the total number of heads in the two flips; c ∈ {0, 1, 2}

(f) Receive reward R(s, a, s′) =

{
2 · a2 − c2 if c ≥ a

−3 if c < a
where c is the total number of heads in s′

Note that the rewards depend only on the action and the landing state, and that all rewards for leaving
the start state are zero. The MDP for this game has the following structure, where all legal transitions
have probability 1

2 . Assume a discount rate of 1.

XX

HX TX

HH

HT

begin

0 1 2

-1

-4 -2 1

0 0

4 -3
TH

TT

0 1 2

0

-1 1 -3
-3 -3

action

state

Key

terminal
state

NAME: SID#: Login: Sec: 7

(a) (3 points) What is the value of the start state under the policy of always guessing a = 2?

1
2 ·

[
1
2 (4− 3) + 1

2 (−3− 3)
]

= − 5
4

(b) (5 points) Run value iteration on this MDP until convergence. Hint : values and q-values of terminal
states are always 0.

V ∗
k (s)

k XX HX TX

0 0 0 0
1 0 1

2 −1
2

2
3
4
5

Value iteration converges after one iteration.

(c) (2 points) What is the optimal policy for this MDP?

π∗(XX) = begin, π∗(HX) = 2, π∗(TX) = 0

(d) (5 points) Run q-learning in this MDP with the following (s, a, s′, r) observations. Use a learning
rate of 1

2 . Leave zero entries blank.

Q(s, a)
s a s′ r (XX,begin) (HX,0) (HX,1) (HX,2) (TX,0) (TX,1) (TX,2)

0 0 0 0 0 0 0
XX begin HX 0

HX 0 HT -1 − 1
2

XX begin HX 0 − 1
2

HX 2 HH 4 − 1
2 2

XX begin HX 0 1 − 1
2 2

8

5. (13 points.) Short Answer

Each question can be answered in a single sentence!

(a) (2 pts) For A∗ search, why might we prefer a heuristic which expands more nodes over one which expands
fewer nodes?

First, an admissible heuristic might expand more nodes than an inadmissible heuristic, but would be guaranteed
to find the optimal answer. Second, even among two admissible heuristics, we might prefer an looser heuristic
that is easier to compute per state.

(b) (2 pts) Why is minimax less reasonable than expectimax as a practical decision-making principle for a
complex agent acting in the real world?

Expectimax handles very low probability events robustly, while minimax will be overly sensitive to low proba-
bility highly negative outcomes (getting hit be meteors, etc.).

(c) (4 pts) An agent prefers to be given an envelope containing $4 rather than one containing either $0 and
$10 (with equal probability). Give a justification for how the agent could be acting in accordance with the
principle of maximum expected utility.

An agent might value $4 almost as much as $10. Utility of money often scales non-linearly.

(d) (4 pts) A stochastic policy π is one which does not recommend a single, deterministic action for each state
s, but rather gives each possible action a a probability. Let π(s, a) be the probability that the policy assigns to
action a from state s. State a one-step lookahead Bellman equation for V π(s) for the case of stochastic policies
π.

V π(s) =
∑

a π(s, a)
∑

s′ T (s, a, s′)[R(s, a, s′) + γV π(s′)]

(e) (3 pts) Under what conditions can an MDP be solved using standard state space search techniques (DFS,
BFS, etc.)?

When (i) all transitions are deterministic, (ii) all rewards are non-posititive (corresponding to non-negative
step costs), (iii) there is no discount, and (iv) there is at least one terminal state (the goal state).

