
 
 
 
 
 
 

CS188  Intro. to AI  
 Fall, 2000  R. Wilensky  

 
 

 Final Examination 
 
 
 
 
• This is an open-book, open-notes exam. 
• Write your name, etc., in the space below; answer all questions in the space provided.  (Space is 

provided for your name on the top of each page as well.) 
• You have 3 hours to work on the exam. 
• There are 125 points total. 
• Questions vary in difficulty; do what you know first. 
• Good luck! 
 

 
 
NAME:                                                            
 
SID:                                                                      TA:                                                               
  
 
 

(Space below for official use only.) 
 
  
Problem 1:                       (20) 
Problem 2:                       (25) 
Problem 3:                       (20) 
Problem 4:                       (30) 
Problem 5:                       (20) 
Problem 6:                       (10) 
 
Total:                               (125) 
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Problem 1 
 
(20 points, 2 points each) For each statement below, say if it is true or false, and give a one sentence 
explanation of your answer. 
 

(a) The sentence “∀  x,y Parent(x,y) → Child(y,x)” is satisfiable but not logically valid. 
 
 
True:  True if Parent and Child are mapped to inverse relations, which of course, they may 
not be. 
 
 
 

 
(b) Any linearly separable data set can be learned by some single layer perceptron. 

 
 
True:  We proved that perceptrons learn exactly the linearly separable sets. 
 
 
 
 

(c) Decision tree learning algorithms may be subject to overtraining, but not neural network learning 
algorithms. 
 
 
False:  We meant overfitting, which can (and does) occur in NNs as well.   (The typo didn’t 

seem to bother many of you, and overtraining is not a bad term for what happens 
anyway.) 

 
 
 
 

(d) Given the expression (which we corrected during the exam, to include r as an existential variable to 
and make the ! a 1) 

 
∃ g,a,r,p,d  Ind(g,Giving) ∧  Agent(a,g) ∧  Recipient(r,g) ∧  Donor(d,g) ∧  Theme(p,g) 

 
we can derive the following expression, assuming that all the constants do not otherwise appear in 
any other formula: 

 
Ind(G1,Giving) ∧  Agent(A1,G1) ∧  Recipient (R1,G1) ∧  Donor (D1,G1 ) ∧  Theme(P1,G1) 
 

 
 

True: Via Existential instantiation (Skolemization) 
 
 
 
 
 
 

(e) Temporal difference learning can be used for deterministic MDPs, but not for non-deterministic 
tasks. 
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False:  TD-Gammon is a case in point. 
 
 
 
 

(f) If a heuristic always returns the same value no matter what the state, it cannot be admissible. 
 
 
False.  It can still be admissible, just not terribly useful. 
 
 
 
 
 
 
 

(g) The Markov assumption enables the Viterbi algorithm to be computationally tractable. 
 
 
 
 
True.  It allows us to limit the amount of state we need to keep track of. 
 
 
 
 
 

(h) A set of propositions in a “production system”, interpreted using a set of conflict-resolution 
strategies, has the same semantics as they would if interpreted as a knowledge base of logic 
formulas. 
 
 
False.  In logic, a sentence like “A x P(x)” means that P is true for all x; in a production 
system, it might mean that P is true for all x except where there is more specific information. 
 
 
 
 
 
 
 

(i) Back-propagation is equivalent to using gradient descent to find a local minimum of an error function 
over training data. 
 
 
True.  We derived back-prop as such in class. 
 
 
 
 
 
 
 

(j) If we know the joint distribution of two random variables, we can determine the conditional 
probability of one variable given another. 
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True.  With the joint, we know everything— we can sum up entries to find the individual 
distributions, etc. 
 
 
 

Problem 2 (25 points ) 
 
Suppose the following are (two-valued) random variables: BootsUp, OS-Ok, HardwareOk, SpilledCoffee.  
These express the probability that a certain computer will boot (i.e., start up correctly), that its operating 
system has not been corrupted, that the hardware is functional, and that coffee was spilled on one of the 
circuit boards, respectively. 
 
(a) (3) Draw a suitable belief network for these variables. 
 
 
 
BootsUp has OS-Ok and HardwareOk as parents; HardwareOk has SpilledCoffee as a parent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) (3) Write down the formula that your network expresses for the joint probability distribution of these 
variables. 
 
 
P(BootsUp, OS-Ok, HardwareOk, SpilledCoffee) =  
P(OScorrupted) × P(SpilledCoffee) × P(HardwareOk|SpilledCoffee) 
× P(BootsUp|HardwareOk,OScorrupted) 
 
 
 
 
 
 
 
 
(c) (3) Provide plausible conditional probability tables for the nodes HardwareOk and BootsUp in your 
network. 
 
 
 

SpilledCoffee   P(HardwareOk|SpilledCoffee) 
T .2 
F .95 
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HardwareOk   OS-Ok   P(BootsUp |HardwareOk,OS-Ok) 
T T .99 
T F .2 
F T .3 
F F .06 

 
(d) (4)  
 

(i) How many independent probability values are needed to fill out all the tables required by your 
network?   (Explain your answer in a sentence.) 

 
There are 8 values needed for the probability tables (the other 8 being computable from 
subtracting from 1). 
 
 
 
(ii) How many independent probability values would be needed to express the joint if we couldn't make 

any of the independence assumptions implied by your network structure?  (Explain your answer in a 
sentence.) 

 
We'd have to know 15 values, the last being computable by subtracting the sum from 1. 

 
 
 
 
(e) (2) The conditional probability table for BootsUp is a canonical one.  Describe, in English, its general 
structure. 
 
    It is a noise-AND.  (see above) 
 
 
 
 
 
 
(f) (3) Is spilling coffee conditionally independent of whether the OS is corrupted, given that we know 
whether or not the machine could boot? Can observing the value of another variable change this 
relationship? 
 
 
     No, but it will be if we observe the remaining node, HardwareOk. 
 
 
 
 
 
(g) (7) A lie detector test is known to be 99% reliable when the person is guilty but only 90% reliable when 
the person is innocent.  If a suspect is chosen from a group of suspects of whom only 1% have committed a 
crime, and the test indicates that the suspect is guilty, what is the probability that the suspect is innocent? 
 
P(Innocent | Test=Guilty) = P(Innocent)P(Test=Guilty | Innocent)/P(Test=Guilty) 
 
P(Innocent) = .99  
P(Guilty) = .01 
P(Test=Guilty | Innocent) = 1-.90=.1 
P(Test=Guilty | Guilty) = .99 
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P(Innocent)P(Test=Guilty | Innocent) = .99 × .1 = .099 
P(Guilty)P(Test=Guilty | Guilty) = .01 × .99 = .0099 
 
by normalization, P(Innocent)P(Test=Guilty|Innocent)/P(Test=Guilty) = .099/(.099+.0099) = .909 
 
Problem 3 (20 points, 2 points each) 
 
Answer true or false, giving a brief (one sentence) explanation of your answer. 
 

 
i) Given a 2-D image, there will generally only be one physically possible 3-D scene that could have 

created it. 
 
False.  There are an infinite number of 2-D scenes that can vary as discussed at length in class 
and in the text. 
 
 
 
 
ii) Texture can be exploited to segment images and also to help determine the pose of an object. 
 

      True.  “Texture gradients” help with orientation, etc., texture per se with segmentation. 
 
 
 
 
iii) Stereo disparity is relatively more discriminating for objects that are close up than for those that are 

far away. 
 
True.  The angular disparity is -bδZ/Z2, so even if the distance between the two points changes 
with the distance for the viewer, the disparity will be linearly smaller. 
 
 
 
iv) A primal sketch can be computed by processing all areas of the image uniformly. 
 
 
True.  Uniformly processing the image is an assumption for “early vision” generally. 
 
 
v) After convolving an image with the derivative of a Gaussian, a “zero-crossing” will indicate the 

presence of an edgelet. 
 
 
False:  Need to look for a big change in the derivative; zero-crossing in the second derivative 
shows an edgelt. 
 

 
vi) We can assign unique labels to lines in a scene only if the scene consists of instances of objects for 

which we have models. 
 
False.  An object model is a model of a particular kind of object.  We don't make any 
assumptions about particular kinds of objects for labeling, just assumptions about the nature of 
their geometry, etc. 
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vii) A catalog of legal junction types can be used to constrain possible line labels, but the catalog will get 

larger as we enlarge the class of scenes we wish to interpret. 
 
True.  As we include cracks, shadows, etc., the catalog can get large. 
 
 
 
viii) Generalized cylinders are proposed to describe the shape of objects because it is not possible to 

approximate some object shapes using polyhedra. 
 
 
False.  It is always possible, just sometimes costly. 
 
 
 
ix) The shading of an object provides useful information about that object's shape. 
 
True.  This is “shape from shading”. 
 
 
 
 
x) Color does not appear to play a significant role in computer vision because it provides no useful 

information for segmentation. 
 
False.  It is quite useful, as we saw in Blobworld, just hard to do right. 
 
 
 

 
 
 
Problem 4 (30 points) 
 
(a) (5) Let’s define the “majority” function of n binary inputs x1, …  , xn, each either -1 or 1, to be 1 if more 
than half of the inputs are 1, and -1 otherwise.  Can this function be represented by a single layer 
perceptron?  Either show that this is impossible or construct such a perceptron (i.e., for a given n, specify 
what the weights for such a perceptron could be). 
 
 

Sure, set all the weights to 1/n and the threshold to ½, say. 
 
 
 
 
 
 
(b) (5) The function EQUAL of two inputs, x1 and x2, is defined to be 1 if the inputs are the same (both -1 or 
both 1) and -1 otherwise. Can this function be represented by a single layer perceptron?  Either show that 
this is impossible or construct such a perceptron. 
 
 
 

This is just ``not XOR''; XOR isn't linearly separable. 
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(c) (5) Draw a decision tree for the majority function, assuming three inputs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(d) (5) We observed (although we didn't prove) that any function can be approximated by a multilayer 
feedfordward neural network of a few layers in which the hidden units have sigmoid activation functions.  
Suppose instead we used linear units, i.e., units whose activation function was just a constant multiple of its 
total input.  Doing so would severely restrict the expressive power of the networks that such networks could 
implement.  Explain why. 
 
 
 
If all the nodes were linear, the whole network could only compute a linear combination of its inputs, 
which is a quite restricted set of functions. 
 
 
 
 
 
 
 
 
 
 
 
 
Below is a network of units.  The units are represented by large and small ovals, all functionally identical.  
The large ovals are intended to represent people in different roles, and action types, and the small ones, 
actions.  The light lines with dots at each end represent inhibitory connections between units, and the dark 
lines excitatory connections; all connections are bidirectional. 
 
For example, the oval labeled “A-Jan” represents Jan in the role of an agent, and the one labelled “A-Lynn” 
Lynn being an agent.  These are shown as inhibiting one another.  However, the node labeled “A-Lynn” is 
connected by an excitatory link to a small circle labeled “I1”, which is itself connected to an oval labeled 

Input1 =1? 

Y N 

Input2 =1? Input2 =1? 

Y 

Y Input3 =1? 

N 

Y 

Y 

N 

N 

Y 

Input3 =1? 
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N 

N 

N 

N 



Name, SID:                                                                                                                                       9

“saw” (i.e., the action of seeing) and to one labeled “T-Pat” (Pat being the theme of some action, i.e., the 
thing acted upon).  In other word, the unit I1 represents an event in which Lynn saw Pat. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assume the all units are at a comparable initial activation.  Now suppose we “clamp down” (i.e., activate 
continually) the units labelled “hit” and “T-Pat” and propagate activations throughout the network.   
 
(e) (3) What other units should end up with high activations?  In general, how would you characterize the 
computation that this network is performing? (I.e., what more traditional computer science system is this 
network approximating?) 
 
I3 and A-Jan would have high activations.  In effect, the network is running a query, or implementing 
associative memory.  I.e., given some properties, it will activate entities with those properties, along 
with other properties of those entities. 
 
 
 
 
 
 
 
 
(f) (2) If we activate only the unit labelled “A-Pat”, the unit for T-Pat will go up in activation somewhat 
(although, perhaps, not as much as the one for T-Lynn).  Since Pat doesn’t do anything to herself in any of 
these actions, why does this unit's activation move up at all? 
 
A-Pat activates I2, which activates “hit”, which activates I3, which activates T-Pat.  In effect, we are 
activating units associated with the associations of our initial unit.  This is in effect a kind of 

A-Lynn A-Pat 

A-Jan 

saw hit 

likes 

T-Jan T-Lynn 

T-Pat 

I1 I2 

I3 
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“crosstalk”.  In general, this is a real problem in NNs: It is very hard to create the equivalent of 
variable bindings in NNs. 
 
 
 
 
 
(g) (5) In reinforcement learning, algorithms like Q Learning tell us how to successively approximate some 
function, which, if we knew it, would in turn give us an optimal policy.  We have to explore our world in order 
to estimate this function, and to do so, we have to move around via some policy.  Indeed, we may already 
have learned quite a decent policy, and it would seem reasonable to use the best policy we know of to 
wander round, as we try to learn a better policy.   
 
However, rather than use the best policy estimate directly, many reinforcement learning algorithms instead 
do the following:  Most of the time, follow the best estimate policy; some small percentage of the time, pick 
one of the possible actions at random. 
 
Picking an action at random is likely to give an inferior result for that particular action, especially when our 
policy is already pretty good.  Why is doing so nevertheless a good idea? 
 
 
 
Many reinforcement learning algorithms, e.g., Q Learning, require that we visit each state infinitely in 
order to be sure they converge on the optimal policy.  Picking an action at random, even a small 
percentage of the time, assures this is the case.   
 
 
 
 
 
 
 
 
 
 
Problem 5 (20 points) 
 
(a) (5) Each of the following examples illustrates a kind of natural language ambiguity.  In each case, name 
a type of ambiguity involved, explaining the particular instance of ambiguity in the sentence that must be 
resolved.  Be as specific as possible; e.g., state whether a lexical ambiguity is syntactic or semantic (or 
both). 
 

 
i. “Squad helps dog bite victim” (actual newspaper headline) 

 
Syntactic ambiguity: [np squad ] [v helps] [np dog bite victim] or 
                                 [np squad ] [v helps] [np dog]  [vp [v bite] [n victim]]] 
 
(also, bite is lexically syntactically ambiguous (n in first interpretaion, v in second) 
    
 

ii. “I had a ball.” 
 
 
semantic lexical ambiguity of “ball” 
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iii. “John told the waiter he didn’t have any money.” 
 

pronoun reference (“he” might be the waiter or John) 
 

iv. “The judgment of the court has been questioned.” 
 
 
role ambiguity:  The court can be the agent of the judgment, or its theme (if, e.g., the public no 
longer trusts the court). 
 
 
 

v. “Jan doesn’t want to marry someone”. 
 
 
scope of quantifier ambiguity:  It’s not the case that there exists someone that Jan wants to 
marry, versus, there exists some whom Jan doesn’t want to marry. 
      ¬  ∃ p Want( Marry(Jan, p)) 
       ∃ p ¬ Want( Marry(Jan, p)) 
 

 
(b) (5) Consider the following context-free grammar: 

 
S →  NP VP  
VP →  V NP  
NP →  D NP 
NP →  A NP 
NP →  N   
NP →  Jan  
D →  the, a  
A →  little, young, good 
N →  boy, girl, boys, girls 
V →  likes, like 
 

Indicate (by circling Y or N) which of the following sentences are admitted by this grammar: 
 
i. Jan likes a little boy.   Y   
ii. Likes a young boy a little girl.         N 
iii. Boys like girls.   Y   
iv. Little a young boy likes the a girls. Y   
v. A Jan likes a boy.   Y   
 

 
(c) (5) Show a parse tree for the sentence “Jan likes good little girls.” 
 
 
 
 
 
 
 
 
 

S

NP 

Jan 

VP 

V NP 

likes A 

good 

NP 

A 

little 

NP 
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(d) (5) We can characterize a problem with our grammar as follows:  Some nouns or noun phrases are 
ready to be used elsewhere, and others are not, but our grammar doesn’t make this distinction.  For 
example, “boy” and “boys” are both described as Ns by a single rule, but “boys” can be a noun phrase all by 
itself (as in “boys will be boys”), while “boy” requires “finishing” (i.e., “a boy will be a man” but not “boy will be 
man”).   
 
Suggest two strategies that a grammar-designer might use to address this problem, one that stays within the 
confines of the context free grammars, and another than does not.  (You need not provided a detailed 
solution.  Just tell us how to approach the problem.) 
 
Using CFGs, one can create lots more non-terminals and rules.  E.g., instead of N, one can have 
Nunfinished  (for “boy”, say) and a Nfinished (for “Jan”, say) and a Nneither (for “boys”, say), and then add 
lots of rules to deal with these (creating NPfinished, etc., also). 
 
Alternatively, one could use unification grammars, and try to introduce features to mark Ns for these 
properties, passing them along and constraining them appropriately. 
 
 
 
 
 
Problem 6 (10 points) 
 
(a) (5) The following is a successor-state axiom for a “Go” operator: 
 

∀  x,y,z,s,a  At(y,Do(a,s))  ↔  (At(x,s) ∧  a=Go(x,y))  
    ∨ (At(y,s) ∧   ¬  (a=Go(y,z) ∧  ¬  y=z)) 

 
 
Give a STRIPS-style representation for the same operator.  What information is explicit in the successor-
state axiom that is implicit in the STRIPS-style operator? 
 
 

Go(x,y): 
pre: At(x) 
del: At(x)  
add: At(y) 

 
The fact that not moving leaves things where they are is not expressed. 
 
 
 
 
 
 
 
 
 
 
 

N 

girls 
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(b) (5) Suppose it were true that At(Loc1,S1).  We would like to use resolution to prove from this fact and the 
successor-state axiom above that we can move to Loc2.  What difficulty would we have in using resolution 
given the form of this axiom? 
 
Fortunately, we don't need all the information in this axiom to prove what we want, but just that part that says 
“If we are at a location in a state, then moving to a location results in a state in which we are at that location”.  
Write down this part of the above axiom in clausal form. 
 
Equality makes resolution inapplicable.  The necessary part is just 
 

∀  x,y,s  At(x,s) →  (At(y, Do(Go(x,y),s)) 
 
which, in clausal form is  
 

{¬ At(x,s), At(y,Do(Go(x,y),s))}  
 
 
 
 
 


