
I. Query Execution / Optimization (Derek) [16 pts]
[2 pts]
1. (499^2) * 500 (or 124500500) pages

[5 pts]
2a. 15000 I/Os
1 pt partial credit for 33000 I/Os (did not apply selectivity predicate)
2b. 5000 tuples

[2 pts]
3a. #2
3b. #2
3c. #2
3d. #1
½ pt partial credit per correct choice

[3 pts]
4. a., b.
1 pt partial credit per correct marking

[4 pts]
5. a,b
½ pt partial credit per correct marking

II. Indexing/Storage (Jay) [17 pts]

[5pts]
1a. False
1b. False
1c. True
1d. False
1e. True

[2 point per answer] = 12 pts
Replacement Policy

● S1: B - MRU since sequential flooding
● S2: A - LRU for temporal locality
● S3: D - if queries requests are random, then any of the policies will perform

approximately equivalently

File Layout, Index:
● S1: D - SortedFile on date, no index

○ just do sequential scans on sorted file
● S2: B - HeapFile with Clustered B+ tree on userid

○ since this constitutes 60% of the data, and fairly write heavy, clustered B+ tree is
better choice than SortedFile

○ partial credit for SortedFile on userid, No index
● S3: A - heapfile, Unclustered B+ tree on postid

○ use unclustered for point lookups, and no need for sorted file

III. Database Design (Michelle) [18 pts]

1.
3.5 points: ½ pt for each edge, underlined key

2. Questions, see diagram above for notation
1.5 points: .5 for partial key, .5 for bolded entity, .5 for bolded reln

3. Relation from student to itself or using aggregation
2 points: 1 pts for making a new entity and a relationship

4. a. A; b. E; c. NMI; d: E
5. iv

 2 points: .5 for each
6. a. NW, INS, NQTPR b. Yes; 3 pts
7. INQ -> RP, (or INQ -> R, INQ -> P), NQ -> T, NQR -> P; 4 pts

IV. Concurrency (Vikram) [11.5pts]

1. 1 point each
a. False
b. False
c. True
d. False

e. True
2. 1 point each

a. Yes
b. No

3. T2, T3, T1, T4: 1 point each
4. i, l

V. Recovery (Varun) [9 pts]

1.
LSN Record prevLSN
80 CLR: T1 LSN 0 70
2.
XID Status lastLSN
T3 Running 100
T2 Aborting 120

For partial credit, we accepted Aborting instead of Running for T3, because all transactions are
essentially aborting during the UNDO phase.
3.
PID recLSN
P2 20
P3 40
P4 50
P1 100
4. 20, 40, 50, 70, 80, 100, 120
5.
LSN Record prevLSN
200 CLR: T3 LSN 100 100
210 END: T3 200
220 CLR: T2 LSN 40 120
230 END: T2 220

6. a, b. a is correct, because during the REDO phase of recovery, some UPDATE log records

that reflect writes that never made it to disk will be skipped. Similarly, b is correct, because
some CLR’s that reflect UNDO’s that never made it to disk will be skipped. c is incorrect
because no COMMIT log records are written during recovery. d is incorrect because even if
REDO begins at a later LSN, the system does not add any new transactions to the
transaction table during REDO.

VI. SQL Anthony [15 pts]

Passenger(
pid (int),
first_name (text) NOT NULL,
last_name (text) NOT NULL

)

Driver(

did (int),
first_name (text) NOT NULL,
last_name (text) NOT NULL

)

Trip(

tid (int),
pid (int references Passenger(pid) NOT NULL),
did (int references Driver(did) NOT NULL),
start_time (timestamp) NOT NULL,
end_time (timestamp) NOT NULL,
distance (decimal) NOT NULL,
passenger_rating (decimal),
driver_rating (decimal)

)

1. You hypothesize that some months of the year are more popular than others,
perhaps due to weather or special events like holidays. To assess this, you want to know
how many trips were completed in each month, independent of year.

 CREATE VIEW num_trips_by_month AS
 SELECT EXTRACT(MONTH FROM start_time) AS month,
 COUNT(*) AS num_trips
 FROM Trips
 GROUP BY EXTRACT(MONTH FROM start_time);

Note: EXTRACT(MONTH FROM _____) is a PostgreSQL function that extracts the numeric
month (e.g. January = 1) out of a timestamp or interval.

2. You want to prepare your staff next year to improve heavily on the poorest performing
month(s) (independent of year). Which month(s) had the minimum number of trips? (Use
the view created in Q1)

 SELECT month
 FROM num_trips_by_month NTM JOIN

(
SELECT MIN(NTM_TMP.num_trips) AS min_column

FROM num_trips_by_month NTM_TMP;
) MIN_TABLE
ON NTM.num_trips = MIN_TABLE.min_column;

3. a. Which drivers have a perfect 5.0 average rating from all their trips that received driver
ratings? (Return just the unique did)

 SELECT T1.did
 FROM Trip AS T1
 WHERE 5.0 = ALL(
 SELECT T2.driver_rating
 FROM Trip AS T2
 WHERE T1.did = T2.did AND driver_rating <> NULL;

);

also
SELECT T1.did

 FROM Trip AS T1
 WHERE NOT EXISTS (
 SELECT *
 FROM Trip AS T2
 WHERE T1.did = T2.did AND driver_rating < 5.0;

b. When executing this query, you find that this query runs very slowly. What about the
structure of this query may cause it to execute so slowly?

A. B. C.

c. You attempt re-writing this same query with the hope of speeding it up.

 SELECT T.did
 FROM Trip as T
 GROUP BY T.did
 HAVING [AVG|MIN](T.driver_rating) = 5.0;

4. You hypothesize that drivers and passengers with the same first name get along better
(have better ratings) than drivers and passengers that don’t share any commonalities.

 Notice that the passenger and driver ratings can be NULL.

 Select the queries that yield the desired result.

 SELECT SAME_NAME.rating AS same_name,

 DIFF_NAME.rating AS diff_name
 FROM (SELECT AVG(driver_rating) AS rating

 FROM Passenger P, Driver D, Trip T
 WHERE P.pid = T.pid AND D.did = T.did

 AND P.first_name = D.first_name) AS SAME_NAME,
(SELECT AVG(driver_rating) AS rating

 FROM Passenger P, Driver D, Trip T
 WHERE P.pid = T.pid AND D.did = T.did

 AND P.first_name <> D.first_name) AS DIFF_NAME;

SELECT SAME_NAME.rating AS same_name,
 DIFF_NAME.rating AS diff_name

 FROM (SELECT (SUM(driver_rating) / COUNT(*)) AS rating
 FROM Passenger P, Driver D, Trip T
 WHERE P.pid = T.pid AND D.did = T.did

 AND P.first_name = D.first_name) AS SAME_NAME,
(SELECT (SUM(driver_rating) / COUNT(*)) AS rating

 FROM Passenger P, Driver D, Trip T
 WHERE P.pid = T.pid AND D.did = T.did

 AND P.first_name <> D.first_name) AS DIFF_NAME;

SELECT AVG(TS.driver_rating) AS same_name,
 AVG(TD.driver_rating) AS diff_name

 FROM Passenger PS, Driver DS, Trip TS,
 Passenger PD, Driver DD, Trip TD

 WHERE PS.pid = TS.pid AND DS.did = TS.did AND
 PD.pid = TD.pid AND DD.did = TD.did AND
 PS.first_name = DS.first_name AND

 PD.first_name <> DD.first_name;

anthonysutardja� 5/10/15 3:04 PM
Comment: tested
http://sqlfiddle.com/#!15/75a7b/1

