

CS186 Midterm 2 Solutions, Spring 2010 Page 1

UNIVERSITY OF CALIFORNIA
College of Engineering

Department of EECS, Computer Science Division
CS186 J. Hellerstein
Spring 2010 Midterm #2

Midterm Exam 2: Introduction to Database Systems: Solutions

1. Query Optimization [12 points]

Consider the following schema.

auctions (aid, minprice, description, seller, end_date).
members (mid, nickname, name, since).
bids (aid, buyerid, amount).

Assume there is an unclustered B-tree index on the key of each table. In answering
questions, use the summary statistics functions that we learned about in class: NPages(),
NTuples(), Low(), High(), NKeys(), IHeight(), INPages().

a. [3 points] Consider the query

SELECT 'found it!' FROM members WHERE mid = 98765;.
Given the information above, write a formula for the optimizer's lowest estimated
cost for this query.

IHeight(Btree on members.mid)

b. [3 points] Consider the query

SELECT * FROM bids, members
 WHERE bids.buyerid = members.mid AND members.since < '2001';
Write the formula the optimizer would use for the selectivity of the entire WHERE
clause.

[1/(MAX(Nvals(bids.buyerid), NVals(members.mid)]

*

[2001 - MIN(members.since)]
 / [MAX(members.since)-MIN(members.since)]

CS186 Midterm 2 Solutions, Spring 2010 Page 2

c. [2 points] Consider the same query as in part (b). Now suppose the optimizer knows

that bids.buyerid is a “not null” foreign key referencing members. Write a simplified
formula for the selectivity of the entire WHERE clause.

 1/NTuples(members)

*

[2001 - MIN(members.since)]
 / [MAX(members.since)-MIN(members.since)]

d. [4 points] Consider the following query:

SELECT R.*
 FROM R, S, T
 WHERE R.a = S.b
 AND S.b = T.c

The following plans are generated during an intermediate pass of the Selinger (System R)
optimizer algorithm. For each plan, write down the ordering column(s) of its output if
any, and whether the plan would get pruned (P) or kept (K) at the end of the pass. If
there is no clear ordering on the output, write “none”.

PLAN

Cost in

I/Os

Ordering Columns of

Output

Prune
or
Keep

IndexNestedLoops (
 FileScan(R),
 IndexOnlyScan(Btree on S.b))

2010 None P

SortMergeJoin(
 FileScan(R),
 FileScan(S))

3010 (R.a, S.b) K

ChunkNestedLoops(
 FileScan(R),
 FileScan(S))

1010 None K

IndexNestedLoops(
 IndexOnlyScan(Btree on (R.d, R.a)),
 IndexScan(Btree on S.b))

30000 (R.d, R.a) P

CS186 Midterm 2 Solutions, Spring 2010 Page 3

2. Relational Algebra/Calculus [16 points]

Consider the following schema:

Store(sid, store_name, parent_company).

Branch(sid, city, open24).
• sid is a foreign key to store
• open24 is a boolean. If true, the store is open 24 hours a day. If false, it is open 7AM-
10PM.

Has_Fruit(sid, city, fid, quantity, price).
• sid is a foreign key to store
• fid is a foreign key to fruit
• price is a floating point number representing the number of whole dollars and whole cents
of the price (for example, 3.00)

Fruit(fruit_id, name, calories).

a. [3 points] Assume it is 2AM in Berkeley, you are craving some pineapple, and since

you own stock in parent company “WFM”, you want to buy your pineapple in a
branch owned by them. Complete the relational calculus query below to return
store_names of all stores with branches in Berkeley that are open at 2AM, have at
least 5 pineapples, charge less than $3.00 per pineapple, and have parent company
“WFM”.

{ X | ∃ S ∃ B ∃ H ∃ F (S ∈ Store ∧ B ∈ Branch ∧ H ∈ Has_Fruit ∧ F ∈ Fruit
∧

s.sid = b.sid AND
s.sid = h.sid AND
b.city = h.city AND
h.fid = f.fruit_id AND
b.city = "berkeley" AND
b.open24 AND
f.name = "pineapple" AND
h.quantity >= 5 AND
h.price < 3.00 AND
s.parent_company = "wfm" AND
x.store_name = s.store_name

}

All 11 clauses correct: 3 points. 5 to 10 clauses: 2 points. 1 to 4 clauses: 1 point.
Points were not deducted for switching </<= and >/>= or for missing quotes on strings
or missing “.00” on floating-point values.

CS186 Midterm 2 Solutions, Spring 2010 Page 4

b. [4 points] Translate the query of part (a) to relational algebra, pushing selections in as

far as possible, postponing projection until the very end, and using the join order:
Store, Branch, Has_Fruit, Fruit.

πstore_name (σparent_company='WFM' (Store) ⨝ σcity='Berkeley' AND open24 (Branch)
 ⨝ σquantity >= 5 AND price < 3 (Has_Fruit) ⨝fruit_id=fid σname='pineapple' (Fruit))

1-2 points for correctness. If at least 1 point for correctness, then 1 point for pushing all
selections down as far as possible, and 1 point for keeping all projections outside.

0 to 3 errors : 1 point off. >= 4 errors : 2 points off.

Points were deducted for:
- using a join order resulting in a cross product
- missing a selection condition
- missing or invalid join conditions (e.g. fid = fruit_id)
- missing tables in WHERE clause

c. [5 points] Assume you are part of LowCal, a student group that encourages students

to eat low-calorie fruit. Your group is starting a new campaign to boycott parent
companies that have at least one store branch with no “Has_Fruit” records for fruit
with less than 300 calories. Complete the relational calculus expression below that
lists the parent companies you should boycott.

{ X | ∃ S ∃ B (S ∈ Store ∧ B ∈ Branch ∧

S.sid = B.sid ∧ X.parent_company = S.parent_company
∀ H ∈ Has_Fruit(

(H.sid = B.sid ∧  H.city = B.city) =>
 ∃ F ( F ∈ Fruit  ∧ F.fruit_id = H.fid ∧ F.calories >= 300)))

}

0.5 points for having "H.sid = B.sid ∧  H.city = B.city" in a context with correct
quantifiers over H and B.
0.5 points for having "X.parent_company = S.parent_company" in a context with correct
quantifiers over X and S.
0.5 points for having "S.sid = B.sid" in a context with correct quantifiers over S and B
0.5 point for having the equivalent of "� F ( F ∈ Fruit  ∧ F.fruit_id = H.fid ∧ F.calories >=
300)" in a context with the correct quantifier over H.
3 points if the second part of your answer was logically equivalent to the solution above.

CS186 Midterm 2 Solutions, Spring 2010 Page 5

d. [4 points] Translate the expression from part (c) into a single SQL query (with a

single “NOT EXISTS” sub-query) by completing the query below. Recall that SQL
returns duplicates by default, whereas the relational calculus does not.

SELECT

DISTINCT S.parent_company
FROM Store S, Branch B
WHERE

S.sid = B.sid
AND NOT EXISTS (
 SELECT *
 FROM Has_Fruit H, Fruit F
 WHERE

H.fid = F.fruit_id
AND H.sid = S.sid
AND F.calories >= 300
AND H.city = B.city

);

The following six expressions should have been included:

1. DISTINCT S.parent_company
2. S.sid = B.sid
3. H.fid = F.fruit_id
4. H.sid = S.sid
5. F.calories >= 300
6. H.city = B.city

All 6 were included: 4 points
4 or 5: 3 points
2 to 3: 2 points
1: 1 point
0: 0 points

CS186 Midterm 2 Solutions, Spring 2010 Page 6

3. Parallel Query Processing [8 points]

a. [4 points] Skew can be a problem in certain query processing techniques. In the table

below, please describe the problems that skew can cause for single-table sorting or
hashing. In the first column please address the single-node algorithms that “spill” to
disk; in the second column please address parallel algorithms and assume that the
data that arrives at each nodes fits in RAM. In cases where skew does not cause
problems, simply write “No Problem”. Your answer should be very short, and fit
within the box!

 SINGLE NODE, SPILLS TO DISK PARALLEL, FITS IN RAM
SORTING

No Problem

Uneven distribution of tuples across
machines will lead to stragglers

HASHING

Uneven distribution of tuples across
partitions will lead to unnecessary
recursive partitioning

Uneven distribution of tuples across
machines will lead to stragglers

b. [4 points] Consider the query

 SELECT key, AVG(val) FROM T GROUP BY key;
Both key and val are integer fields, and our machines use 4-byte integers and floats.
Assume there are 10,000 key values, and 101 machines. Tuples are distributed
randomly across all 101 machines to begin, and all 101 machines share the work of
processing each query operator. How many bytes should this query send across the
network, not including output? Briefly and neatly justify your answer by describing
the data sent by each machine (your answer should fit easily below!)

Transvals have form (key,count,sum)
Transvals computed per node
Fraction of Transvals shipped
nodes sending (partitioned ||-ism)

12
10,000
100/101
101

Bytes/Transval
Transvals/Node
Nodes/Nodes
Nodes

 12,000,000 Bytes

CS186 Midterm 2 Solutions, Spring 2010 Page 7

4. SQL [13 points]

Consider the table created by the following SQL statement:

CREATE TABLE G (-- G is short for Grades
 ssn INT, -- ssn of student
 class CHAR(5), -- department and number of course
 grade INT, -- final grade between 0 and 100
 PRIMARY KEY(ssn, class)
)

Fill in the blanks to produce valid SQL queries to answer the following questions.

a. [3 points] Find the SSNs of students who received the maximum score in CS186

without using MAX.

SELECT ssn FROM G

WHERE class='CS186' AND _>= ALL_

 (SELECT grade FROM G);

One point was deducted for use of >=. No points were given for answers involving
“100”, since it was noted on the board during the exam that “maximum” refers to the
highest score in the class, not the maximum possible score.

b. [3 points] Find the SSNs of all students who have received grades of 85

or above in at least 3 classes.

SELECT ssn FROM G

WHERE _grade >= 85_

GROUP BY _ssn_

HAVING _COUNT(*) >= 3 ;

Any valid expression was accepted inside the COUNT() aggregate. Using “>” instead of
“>=” in one place was forgiven. Using “> 84” or “> 2” is okay. Using > in both the
WHERE and HAVING clause, using the wrong GROUP BY, or reversing the WHERE

CS186 Midterm 2 Solutions, Spring 2010 Page 8

and HAVING clauses resulted in lost points.

CS186 Midterm 2 Solutions, Spring 2010 Page 9

c. [3 points] For each CS186 student, return three columns: their SSN, a boolean value

indicating whether they have taken CS161, and the average of their grades in the two
classes combined. If they have not taken CS161, produce NULL for their average
grade.

CREATE VIEW T1 AS
 SELECT ssn, grade FROM g WHERE class='CS186';
CREATE VIEW T2 AS
 SELECT ssn, grade FROM g WHERE class='CS161';

SELECT _T1.ssn, T2.ssn IS NOT NULL, (T1.grade + T2.grade)/2

FROM T1 LEFT OUTER JOIN T2

 ON T1.ssn = T2.ssn ;

Points were not deducted for correct use of CASE, although this was unnecessary (only
for CASE with wrong syntax or result). Points were lost for the syntax “ON ssn” (invalid
ambiguous reference to ssn), for the syntax “T2.ssn <> NULL” (this is NULL when
T2.ssn is NULL, not false), for the use of aggregates such as AVG (aggregates cannot
aggregate over columns, only over rows, and there is no GROUP BY here), for the wrong
type of JOIN, and for many other reasons.

d. [4 points] Find pairs of distinct students who took at least 3 classes together. Each

unordered pair should be listed only once.

SELECT _G1.ssn, G2.ssn_

FROM _FROM G AS G1, G AS G2_

WHERE _WHERE G1.ssn < G2.ssn_AND G1.class = G2.class

GROUP BY _G1.ssn, G2.ssn_

HAVING _COUNT(*) >= 3_;

Two points were deducted for not including G1.ssn < G2.ssn or G1.ssn > G2.ssn – this
was the essential condition needed to ensure that duplicate unordered pairs do not occur
(e.g. (2,4) and (4,2)). Alternate table names instead of G1, G2 were accepted, as were
redundant conditions such as G1.ssn <> G2.ssn; and you could put anything valid inside
the COUNT() aggregate. Points were also deducted for excluding the condition G1.class
= G2.class, for selecting from only one copy of G, for grouping by class instead of ssn,
for placing the HAVING condition in the WHERE clause, for not including both ssn
columns in the output, and for many other reasons.

