
 1

UNIVERSITY OF CALIFORNIA
Department of EECS, Computer Science Division

CS186 Hellerstein
Spring 2010 Final Exam

Final Exam: Introduction to Database Systems

Solutions are in red. Correct answers intended to be circled are highlighted.

 2

Q1: Tree-Structured Indexes [10 points]

Consider the instance of the Enrolled table:

Student ID Course ID

1 186

2 186

1 161

1 170

1 152

2 162

3 162

a) Use the bulk-loading algorithm to create an “Alternative 1” B+Tree index below on (Student ID, Course ID). Assume 2
entries (3 pointers) fit per internal node, with a minimum of 1 entry (2 pointers). Assume 2 entries fit per leaf node. Fill
leaf nodes to capacity. Draw your solution below. [4 points]

(The left internal node is not completely full because otherwise the right internal node would be underfull.)

b) Consider an “Alternative 1” B+Tree of height H where internal nodes and leaf nodes both hold R entries (internal nodes
also hold R+1 pointers). All intermediate nodes (including the root) are full, and all leaf nodes are at least half-full. Given
this constraint and the usual constraints of a B+Tree, assume whatever data you want in the tree for each part below.
Assume that we measure height starting at 1 -- i.e. a 1-node B+Tree has height 1. [2 points]

 i) What is the maximum number of inserts possible before the root splits?

((R+1)H – 1)(floor(R/2)) (assuming all leaf nodes are half full)

 ii) What is the minimum number of inserts that would cause the root to split?

1 (assuming insertion into a full leaf node)

 2, 162

1, 170 1, 186 1, 152 1, 161 3, 162

 1, 170 3, 162

 2, 162 2, 186

 3

c) Fill in the cost table below for “Alternative 1” ISAM and B+Tree indices: [4 points]

Assume each index takes P pages on disk, has height H, and fanout F at each internal node. Assume there are R tuples in
the relation, and B tuples fit on a leaf (or overflow) page. In each case, assume infinite buffer pool size, but the buffer pool
starts out empty. For each page that you dirty, add 1 to your I/O cost since it will eventually have to be flushed to disk. For
ISAM, assume that a leaf node maintains only a pointer to the beginning of an overflow list. Given the constraints of a
B+Tree/ISAM, assume whatever data you want in the tree for each case below.

 Worst-case # I/Os for Range Query Worst-case # I/Os to Insert

ISAM P (index consists of root with a
linear string of overflow pages.
Need to look at all overflow
pages since they're not sorted)

or

H + R/B

or

H + (F^H – 1) + R/B (look at
whole leaf level and all data in
last leaf overflow)

P+2 (index consist of a root
with a string of overflow pages.
Need to scan til the end, and
add a new overflow page in the
worst case, and update the
previous last overflow page
with a pointer)

H + R/B + 2

B+Tree H + F^H (range query covers
the whole table)

H + R/B

P was not accepted here, as this
would imply only 2 I/Os, given
the structure of the index.

3 H + 1 (every node needs to
split, +1 for new root. Read
pages we're going to split on
the way down, so we don't need
to read them again.)

 4

Q2: Normal Forms [11 points]

Consider the “Congress” relation, and associated functional dependencies:

Congress(Bill, Title, Sponsor, Party, District, Committee, cHairperson, chAirperson_party, heaRing_time)

R → SP
SP → DCH
B → SCT
DH → A
TS → R
SPR → B
S → P

a) [4 points] All of the candidate keys for the relation above are listed below, possibly along with some attribute sets that
are not candidate keys. Circle the attributes sets that are candidate keys for the relation above.

- R
- S
- B
- TS

b) Circle the constraints below (if any) that violate BCNF. [4 points]

1. R → SP

2. SP → DCH

3. B → SCT

4. DH → A

5. TS → R

6. SPR → B

7. S → P

8. None of the above

c) Consider the following relation and functional dependencies:

SupremeCourt(Docket, Appellant, Respondent, Oral_argument_time, oPinion_author, appoInted_by, parTy)

1. PI → T
2. RP → I
3. O → ARP
4. D → O
5. OA → D

i) Write the lossless-join decomposition of this relation into BCNF, by resolving the constraints that violate BCNF
(if any) in numerical order. [2 points]

DAROPIT decomposes by (1) into DAROPI and PIT, since PI does not determine all attributes.
DAROPI decomposes by (2) into DAROP and RPI, since RP does not determine all attributes.
O determines ARP, and OA determines D, so O is a superkey of DAROP.
D determines O, and O is a superkey of DAROP, so D is a superkey of DAROP.
Final lossless-join decomposition: DAROP, RPI, PIT

ii) Is this decomposition dependency-preserving? [1 point]
 Yes (for every constraint, all columns in the constraint are in a single table in the decomposition)

 5

d) Assume that you considering a new normal form TANF (Totally Awesome Normal Form). A relational schema R
satisfies TANF if, for every functional dependency X → Y, one of the following is true:

i) X → Y is a trivial FD
ii) X is a candidate key for R

Assume you decompose a relation R into TANF in the same way you decompose a relation into BCNF. Does this
decomposition for TANF always have the lossless-join property? If yes, provide a 2.5-line argument. If no, provide a
counterexample involving at most two FDs. Longer answers will receive no credit. [3 points]

If YES, write argument here: TANF is a subset of BCNF, and BCNF has the lossless-join property.

If NO, write counterexample here:

 6

Q3: Concurrency [10 points]
Consider the following schedule of accesses by three transactions. The labels R and W indicate reads and writes, and the
labels A, B, and C indicate distinct elements of data.

There are many correct answers to this question – as long as each piece of data is locked before used, each row contains at
most one item, and no transaction locks data after it begins unlocking, the answer is correct.

Time T1 T2 T3

1

L(A)

2 R(A)
3 L(C)

4 R(C)
5

L(B)

6 R(B)
7

8 W(B)
9

U(B)

10

U(A)

11

 L(B)

12 R(B)
13 L(A)

14 R(A)
15 U(C)

16

 L(C)

17 R(C)
18

19 W(C)
20

 U(C)

21 W(A)
22 U(A)

23

 U(B)

 7

(a) [2 points] Recall the definition of a precedence graph: “A precedence graph has a node for each committed transaction,
and an arc from Ti to Tj if an action of Ti precedes and conflicts with one of Tj’s actions.” Draw a precedence graph for the
schedule on the previous page.

(b) [2 points] Is the schedule on the previous page conflict-serializable? If so, what order should the transactions be
executed in to produce a conflict-equivalent serial schedule?

The precedence graph contains no cycles, so the schedule is conflict-serializable. The only possible conflict-equivalent
serial schedule is T2, T1, T3.

(c) [1 point] Suppose instead of reading B at time 12, transaction 3 reads B at time 7. Draw a precedence graph for this
modified schedule.

(d) [1 point] Is the schedule of part (c) conflict-serializable? If so, what order should the transactions be executed in to
produce a conflict-equivalent serial schedule?

The precedence graph contains a cycle, so the schedule is not conflict-serializable.

(e) [4 points] Add lock/unlock actions into the schedule on the previous page in a way compliant with (non-strict) two-
phase locking. Use L(X) to lock a data element X, and U(X) to unlock it. At most one box on each row should contain an
action, and it may contain only one action. You should only use exclusive locks, not shared (read) locks. No locks should
remain held at the end of the schedule.

See previous page.

T1

T2 T3

T1

T2 T3

 8

Q4: Logging and recovery [11 points]
Your database server has just crashed due to a power outage. You boot it back up, find the following log and checkpoint
information on disk, and begin the recovery process. Assume we use a STEAL/NO FORCE recovery policy.

LSN Record prevLSN
30 update: T3 writes P5 null
40 update: T4 writes P1 null
50 update: T4 writes P5 40
60 update: T2 writes P5 null
70 update: T1 writes P2 null
80 Begin Checkpoint -
90 update: T1 writes P3 70
100 End Checkpoint -
110 update: T2 writes P3 60
120 T2 commit 110
130 update: T4 writes P1 50
140 T2 end 120
150 T4 abort 130
160 update: T5 writes P2 Null
180 CLR: undo T4 LSN 130 150

Transaction table at time of checkpoint
Transaction

ID
lastLSN Status

T1 70 Running
T2 60 Running
T3 30 Running
T4 50 Running

Dirty page table at time of checkpoint
Page ID recLSN

P5 50
P1 40

(a) [3 points] The log record at LSN 60 says that transaction 2 updated page 5. Was this update to page 5 successfully
written to disk? The log record at LSN 70 says that transaction 1 updated page 2. Was this update to page 2 successfully
written to disk? Explain briefly in both cases.

The update at LSN 60 may have been written to disk; the log entry was flushed before the write itself. It was not yet flushed
at the time of the checkpoint, but may have been flushed later.

The update at LSN 70 was flushed to disk. We know this because it’s not in the dirty page table at the time of the
checkpoint.

(b) [4 points] At the end of the Analysis phase, what transactions will be in the transaction table, and with what lastLSN and
Status values? What pages will be in the dirty page table, and with what recLSN values?

Transaction ID lastLSN Status
T1

90 Running

T3

30 Running

T4

180 Aborting

T5

160 Running

Page ID recLSN
P1

40

P2

160

P3

90

P5

50

(c) [4 points] At which LSN in the log should redo begin? Which log records will be redone (list their LSNs)? All other log
records will be skipped.

Redo should begin at LSN 40, the smallest of the recLSNs in the dirty page table. The following log records should be
redone:

40, 50, 60, [80], 90, [100], 110, [120], 130, [140], [150], 160, 180

30 is skipped because it precedes LSN 40. 70 is skipped because P2.recLSN = 160 > 70. Entries that are not updates are
skipped. The CLR record is not skipped, nor is the LSN that it undoes.

 9

Q5: Search and Query Processing [10 points]
You are consulting on the design of a new search engine. The company building it wants to use SQL on top of a DBMS.
(You tell them that using a DBMS is not the best approach for high-performance text search. They tell you it is a non-
negotiable design decision. You nod reasonably; this is not your first time working with an irrational customer!)

a) [4 points] The company has prototyped basic Boolean search on a small test data set. They are storing the files in
a single table of the form
 Files(docID integer, content text, PRIMARY KEY (docID)).
And they have a table of StopWords as well.

Here’s their query template for a 2-keyword search ($1 and $2 are replaced with keywords at runtime):

SELECT DISTINCT A.docID
 FROM Files A, Files B, StopWords S
 WHERE A.docID = B.docID
 AND A.content LIKE %$1%
 AND B.content LIKE %$2%
 AND $1 <> S.word
 AND $2 <> S.word;

For each of the following comments, answer True or False, and explain your answer in the space provided (DO
NOT use more space!):

i. This query is exponential in the number of File tuples, so it will get exponentially slower as they add files
to their corpus.

False. With hash join should be at worst O(nlogn) growth.

ii. The self-join in this query is useless.

True. A self-join on the key just matches files with themselves. Could drop Files B and the join clause,
and test all predicates on Files A.

iii. This query will produce no output for the keyword $1 = “the” as long as it was inserted into the
StopWords table.

False. The inequality join condition will be satisfied by all other words in Stopwords.

iv. The query optimizer may produce ridiculously bad join orders.

True. It is very hard for a query optimizer to predict the reduction factor of a predicate with LIKE in it,
and this can vary widely. Bad join order (say A join B rather than B join A) can cost a lot.

==
If your answer continues below here it is TOO LONG.

 10

b) [4 points] The company likes your idea of using inverted indexes. They propose to use the scheme we described in
class: build an InvertedFile relation in the DBMS with an “Alternative 3” B-tree index on the term column.
The data entries in the leaves point to RecordIds of the InvertedFile heap file in the database.

You explain to them that their DBMS will not ensure that the “Alternative 3” entries are sorted by RecordId. So
the optimizer will not be able to choose the “standard” query plan from class using merge join. They don’t see any
problem with that.

To demonstrate, you show the Boolean query “Miley AND antidisestablishmentarianism”. The data entry (postings
list) for “Miley” takes 350MB(42.9 million results on Google), and the one for “antidisestablishmentarianism”
takes 5MB (81,200 results on Google). They have 10MB of buffer space to run this query.

Assume the optimizer does a good job choosing among the various join algorithms and access methods we learned
in class. Draw the query plan it would choose, and write down the total I/O cost including index access and join
costs (but not the cost of writing out the answer).

Picture: HashJoin(IX-SCAN_anti(InvertedFile), IX-SCAN_miley(InvertedFile)).

First, hash the postings for “antidisestablishmentarianism”; it fits in memory. Then simply stream the results of the
“Miley” postings out of the index and look each up in the main-memory hashtable. Block Nested Loop gives a
similar analysis.

2*IHeight + (5MB + 350 MB)/ B where B is the number of MBytes/Block.

c) [2 points] What would the I/O cost have been using the scheme described in class: i.e. postings lists guaranteed to

be sorted by docID, and simple merge join?

2*IHeight + (5MB + 350 MB)/ B where B is the number of MBytes/Block.

 11

Q6: A Little SQL [4 points]

The questions on this page refer the the relation defined by this statement:
CREATE TABLE Students(id integer, gpa float, name text,
 address text, gender char,
 PRIMARY KEY (id));

a. [1 point] Are the two queries below equivalent ? That is, do they return the same answer on any database
instance? Answer True of False; no explanation required.

SELECT MAX(S.id) FROM Students S;

SELECT S.id FROM Students S
 WHERE S.id >= ALL (SELECT S2.id FROM Students S2);

YES

b. [1 point] Among the 3 queries below, some or all are equivalent. Circle the ones that are equivalent.

SELECT MAX(S.gpa) FROM Students S;

SELECT S.gpa FROM Students S
 WHERE S.gpa >= ALL (SELECT S2.gpa FROM Students S2);

SELECT S.gpa FROM Students S
GROUP BY S.gpa
HAVING S.gpa >= ALL (SELECT S2.gpa FROM Students S2
 WHERE S2.gpa > S.gpa);

c. [1 point] Consider the following query and the table of data to the right:

SELECT S.id FROM Students S
 WHERE S.gpa > 3.3
 AND S.id > 120;

How many rows should be in the output?

1

d. [1 point] Using the same data from the table in part
(c), how many rows should be in the output of the following query?

SELECT S.id FROM Students S
 WHERE S.gpa > 3.3 OR S.gender = ‘M’;

3

id gpa name address gender

123 null Joe 38 Maple M

124 3.2 Hui 64 Vine F

127 3.9 Celia 21 Elm F

111 3.2 Hector 11 Oak M

 12

Q7: More SQL [8 points]

Consider this old chestnut: the Stable Marriage Problem, described on its Wikipedia page as follows.

Given n men and n women, where each person has ranked all members of the opposite sex with a unique number
between 1 and n in order of preference, marry the men and women off such that there are no two people of
opposite sex who would both rather have each other than their current partners. If there are no such people, all the
marriages are "stable".

The (arguably old-fashioned) algorithm at Wikipedia has the following pseudocode:

 1 function stableMatching {
 2 Initialize all m ∈ M and w ∈ W to free
 3 while ∃ free man m who still has a woman w to propose to {
 4 w = m's best ranked such woman who he has not proposed to yet
 5 if w is free
 6 (m, w) become engaged
 7 else some pair (m', w) already exists
 8 if w prefers m to m'
 9 (m, w) become engaged
10 m' becomes free
11 else
12 (m', w) remain engaged
13 }
14 }

We will implement a batch-oriented scalable version of this algorithm in SQL using the following schema. The first two
tables are the input to the algorithm, the last four are used in the implementation.

-- for each male, store a pref for each female -- the lower the better (1 is best, 2 is 2nd-best, etc). status is either
-- ‘f’ for free, or ‘e’ for engaged, and should preserve the FD mID->status.
CREATE TABLE M (mID integer, fID integer, pref integer, status char,
 PRIMARY KEY (mID, fID));

-- similarly for each female, store a pref for each male, but here preserve fID -> status.
CREATE TABLE F (fID integer, mID integer, pref integer, status char,
 PRIMARY KEY (fID, mID));

-- keep track of prior proposals (for tests in lines 3-4)
CREATE TABLE proposals (mID integer, fID integer);

-- keep track of engagements
CREATE TABLE engaged (mID integer, fID integer);

-- each round we will have a set of new proposals to consider
CREATE TABLE newproposals (mID integer, fID integer);

-- some rounds we may find engaged women who would prefer to upgrade to a new proposal (lines 8-9)
CREATE TABLE upgrades (newMan integer, fID integer, oldMan integer);

 13

a. [1 point] Translate line 2 of the pseudocode into SQL over the schema above.

UPDATE M SET status = 'f';
UPDATE F SET status = 'f';

b. [3 points] Fill in the following SQL, for generating a set of all (mID, fID) pairs corresponding to a batch of
(m,w) pairs from lines 3 and 4.

DELETE FROM newproposals;

INSERT INTO newproposals
 SELECT MIN(M.mID), M.fID
 FROM M
 WHERE M.status = 'f'
 AND M.pref =

 (SELECT MIN(M2.pref)
 FROM M AS M2
 WHERE M2.mID = M.mID
 AND NOT EXISTS (SELECT *
 FROM proposals AS p

 WHERE p.mID=M2.mID

 AND p.fID = M2.fID)
)
 GROUP BY M.fID;

c. [2 points] A slightly simpler version of the previous query would omit the GROUP BY clause, and use M.mID
rather than MIN(M.mID) in the SELECT list. What problem could arise in this simpler version of the query?

Multiple men would propose to the same woman “at once”.

 14

d. [2 points] Fill in the query below corresponding to lines 5 and 6 of the pseudocode:

INSERT INTO engaged
SELECT DISTINCT P.mID, P.fID
 FROM newproposals AS P, F

 WHERE P.fID = F.fID

 AND F.status = ‘f’

THE END!

For your entertainment, here is some SQL that corresponds to lines 7-8 of the pseudocode (lines 11-12 are a no-op).

DELETE FROM upgrades;

INSERT INTO upgrades
SELECT p.mID AS newMan, p.fID, engF.mID AS oldMan
 FROM newproposals AS P, F as newF, F as engF, engaged AS E
 WHERE P.fID = newF.fID
 AND P.mID = newF.mID
 AND newF.fID = engF.fID
 AND engF.fID = E.fID
 AND engF.mID = E.mID
 AND newF.status = 'e'
 AND newF.pref < engF.pref;

DELETE FROM engaged
 WHERE (mID, fID) IN (SELECT oldMan, fID FROM upgrades);

UPDATE M SET status = 'f'
 WHERE mID IN (SELECT oldMan FROM upgrades);

INSERT INTO engaged
SELECT newMan, fID
 FROM upgrades;

UPDATE M SET status = 'e'
 WHERE mID IN (SELECT mID FROM engaged);

UPDATE F SET status = 'e'
 WHERE fID IN (SELECT fID FROM engaged);

