
University of California, Berkeley
College of Engineering

Computer Science Division – EECS
Spring 2006 Prof. Michael J. Franklin

MIDTERM II
CS 186 Introduction to Database Systems

Question 1 – SQL [6 parts, 40 points total]
Consider the following basketball schema with four relations (primary keys are
underlined):
 Player (pid: integer, pname: varchar(50), team: varchar(30))
Each player plays for only one team. The team field is a foreign key to Team.
 Team (tname: varchar(30), city: varchar(20))
There can be multiple teams from the same city.
 Game (gameid: integer, homeTeam: varchar(30), awayTeam: varchar(30),

homeScore: integer, awayScore: integer)
homeTeam and awayTeam are foreign keys to Team. Two teams may play each other
multiple times each season. The homeTeam and awayTeam are always different. Ties
are not allowed.
 Stats (pid: integer, gameid: integer, points: integer, assists: integer, rebounds:

integer)
Stats records the performance statistics of a player within a game. If a player does not
play in a particular game, they will not have any statistics recorded for that game.
gameid is a foreign key to Games. pid is a foreign key to Player.

Write SQL queries for the following. All of these are doable without creating views or
temporary tables. You may do so if you feel it is necessary but we’ll take off some
points if you do. We will also take off points for doing unnecessary joins, distincts,
etc.:

a) [3 points] How many different players have scored more than 50 points in a game?

b) [5 points] For all the Players who have played in at least one game, list their pid and
the total number of points they have scored. Return the list in descending order of the
total number of points.

Question 1 – SQL continued
Recall the schema:
 Player (pid, pname, team)
 Team (tname, city)
 Game (gameid, homeTeam, awayTeam, homeScore, awayScore)
 Stats (pid, gameid, points, assists, rebounds)

c) [5 points] A “triple double” is when a player’s number of assists, rebounds, and points
in a game are all 10 or more. For each triple double, list the name (pname) and team
(tname) of the player who got it, and the city where the game was played.

d) [7 points] List the names of teams who never lost a game at home.

Question 1 – SQL continued
Recall the schema:
 Player (pid, pname, team)
 Team (tname, city)
 Game (gameid, homeTeam, awayTeam, homeScore, awayScore)
 Stats (pid, gameid, points, assists, rebounds)

e) [10 points] List the name of each team that won more games at home than they lost at
home.

f) [10 points] List the name of each team and a count of the number of games the team
has won overall (i.e., regardless of whether they were the home team or away team).

Question 2 – Hashing [4 parts, 15 points total]
Consider a relation containing information about university students:

 Students (sid: integer, sname: varchar(50), street: varchar(50), city: varchar(30),

age: integer)

consisting of 250,000 tuples, where there are 100 tuples per block (i.e., the students file is
2500 blocks long).

a) (2 points) Consider a simple, 2-pass disk-based hashing strategy as described in
lecture, where in the first pass the file is partitioned and in the second pass each of the
partitions is hashed (i.e., not hybrid hashing!). Ignoring any space overhead for building
hash tables and assuming a perfect hash function, what is the minimum number of
memory pages (same size as file blocks) required to hash the Students relation in 2
passes?

b) (3 points) In part (a) above, how many I/Os will be required? Assume that the
relation is originally on disk and that the result of the hashing operation must also be
written to disk.

c) (5 points) Now, suppose that the hash function used for part (a) does not work very
well. Describe briefly why 2 passes may not be sufficient and how a complete algorithm
would solve this problem.

d) (5 points) Now, consider a combined Hash/Aggregation operator using “hybrid
hash”, such as the one you implemented in HW 2 and the query “SELECT COUNT(*)
FROM Students GROUP BY age”. Given a relatively small amount of memory (say,
20 pages or so), would you expect the hybrid hash approach to perform better than the
regular two-pass hashing approach on this query? Why or why not? (state any
assumptions you are making and answer concisely)

Question 3 – Query Optimization [4 parts, 25 points total]
Consider the following relational schema (with primary keys underlined):

 STUDENTS (sid, s_name, street, city, age)
 COURSES (cid, c_name, prof_name)
 REGISTERED (sid, cid, credits)
 Where sid and cid are foreign keys referencing STUDENTS and COURSES

respectively.

With the following characteristics:

• The STUDENTS relation has 10,000 tuples
• 20 tuples of STUDENTS fit in one disk block
• NKeys(city) for STUDENTS is 200 (i.e., there are 200 distinct values for city)
• NKeys(age) for STUDENTS is 50
• The REGISTERED relation has 40,000 tuples
• 50 tuples of REGISTERED fit in one disk block
• The COURSES relation has 500 tuples
• 40 tuples of COURSES fit in one disk block

and the following indexes:
• A hash index is defined on sid for STUDENTS
• A clustered B+Tree index is defined on the city attribute for STUDENTS
• An unclustered B+Tree index is defined on the age attribute for STUDENTS

For parts a, b, and c, state an efficient method for answering this query and state how
many disk accesses will have to be made in order to answer the query using this method.
Be sure to state which index(es) if any you are using. State any assumptions you are
making. Note, you cannot assume that any of the relations fit in memory. Part of your
grade will depend on how efficient a solution you choose.

a) [5 points] SELECT *
 FROM STUDENTS
 WHERE city = ‘Berkeley’ and age = 30;

Question 3 – Query Optimization (continued)

b) [5 points] SELECT *
 FROM STUDENTS
 WHERE city = ‘Berkeley’ and sid = 123456789;

c) [7 points] Assuming there are five (5) pages of memory available for use in by the
join, there are no indexes on REGISTERED or COURSES, and they are not currently
sorted, choose an efficient method for computing the join of these two relations and
estimate the number of disk I/Os it would incur. Be sure to state the join method you
have chosen, and which relation is inner or outer if appropriate.

d) [8 points] Consider the three way join between STUDENTS, COURSES, and
REGISTERED. Show an efficient join ordering (no need to specify a join method for
this question) and estimate the number of tuples that will be in the result of each of the
joins.

Question 4 – More Query Optimization [5 parts, 20 points total]
Recall the Basketball schema from Question 1:
 Player (pid, pname, team); Team (tname, city)
 Game (gameid, homeTeam, awayTeam, homeScore, awayScore)
 Stats (pid, gameid, points, assists, rebounds)

a) [5 points] Consider the four-way join of these relations. Give one join ordering that a
System-R optimizer would NOT consider, and briefly state why it would not consider it.

b) [3 points] Write a SQL SELECT statement that could take advantage of a composite
B+tree index on Stats using the composite key (points, assists, rebounds) but could not
take advantage of a composite B+tree index using (assists, rebounds, points).

c) [3 points] Write a SQL SELECT statement that could take advantage of a B+tree
index on Stats using the key (points) but could not take advantage of a Hash index using
the key (points).

d) [5 points] Assume that in the Stats relation, there are 10,000 tuples with 50 unique
values for “points” and 20 unique values for “rebounds”. What is the expected
cardinality computed by a System R-style optimizer for the predicate “points = rebounds”
on the Stats relation?

e) [4 points] Consider the “points” attribute of the Stats relation. Why might a query
optimizer that maintains histograms over values of points provide better query plans than
one that uses the System R approach of keeping only the high-low values and the number
of distinct values?

