
CS 186/286 Fall 2017 Midterm 1
• Do not turn this page until instructed to start the exam.

• You should receive 1 single-sided answer sheet and a 14-page exam packet.

• You have 80 minutes to complete the midterm.

• The midterm has 5 questions, each with multiple parts.

• You will turn in the answer sheet but not the exam.

• For each question, place only your final answer on the answer sheet; do not show work.

• Use the blank spaces in your exam for scratch paper.

• You are allowed one 8.5” × 11” double-sided page of notes.

• No electronic devices are allowed.



1 SQL

Imagine that you are using SQL to program an online card game. You are given a table Deck(suit text,

val text, score integer) primary key(suit, val) where each tuple in Deck represents one card to be
dealt. The suit is one of 4 possible strings: hearts, spade, club, diamond and the value is one of thirteen
possible strings: two, three, four, five, six, seven, eight, nine, ten, jack, queen, king, ace. Assume
that Deck represents a standard deck of 52 playing cards.

suit val score

heart two 2

spade king 13
...

...
...

1. (1 point) Which of the following queries is a syntactically valid SQL query that returns 1/2 the score
attribute as a floating point number? There is only one correct answer.

A. SELECT FLOAT(score)/2 FROM Deck

B. SELECT score/2 AS FLOAT FROM Deck

C. SELECT CAST(score AS FLOAT)/2 FROM Deck

D. SELECT (FLOAT)score/2 FROM Deck

E. SELECT score:FLOAT/2 FROM Deck

F. None of the above

Solution: C. Recall from the SQL Homework, that Postgres uses the syntax CAST(attr as TYPE).
So to return 1/2 the score attribute as a floating point number, the answer is C.

2. (5 points) We want to create a view called Hand that includes all possible distinct draws of two cards
from the deck (without replacement) where order does not matter. For example, the view should
include either (heart, jack, 11, spade, four, 4) or (spade, four, 4, heart, jack, 11), but not both.
Which of the following queries correctly populates the view. There may be zero, one, or more than
one correct answer.

A. CREATE VIEW Hand(suit1, val1, score1, suit2, val2, score2) AS

SELECT draw1.*, draw2.*

FROM Deck as draw1, Deck as draw2

WHERE NOT (draw1.suit = draw2.suit AND draw1.val = draw2.val)

B. CREATE VIEW Hand(suit1, val1, score1, suit2, val2, score2) AS

SELECT draw1.*, draw2.*

FROM Deck as draw1, Deck as draw2

WHERE (draw1.suit > draw2.suit

OR (draw1.suit = draw2.suit AND draw1.val > draw2.val))

C. CREATE VIEW Hand(suit1, val1, score1, suit2, val2, score2) AS

SELECT draw1.*, draw2.*

FROM Deck as draw1, Deck as draw2

WHERE (draw1.suit < draw2.suit

OR (draw1.suit = draw2.suit AND draw1.val < draw2.val))

D. CREATE VIEW Hand(suit1, val1, score1, suit2, val2, score2) AS

SELECT DISTINCT draw1.*, draw2.*

FROM Deck as draw1, Deck as draw2

WHERE NOT (draw1.suit = draw2.suit AND draw1.val = draw2.val)

Page 2 of 14



E. CREATE VIEW Hand(suit1, val1, score1, suit2, val2, score2) AS

SELECT draw1.*, draw2.*

FROM Deck as draw1, Deck as draw2

WHERE (draw1.suit < draw2.suit

AND draw1.val < draw2.val)

Solution: B and C. To understand why B and C are the correct solutions, let’s first consider
a simpler problem with a table with a single attribute. Suppose you had a table T with a single
attribute a, this query returns all pairs:

SELECT t1.a, t2.a

FROM T as t1, T as t2

This query will return the set of tuples (s, t) that both includes exact duplicates where s = t and
duplicates up to ordering where (s, t) = (t, s). We can remove these by adding the following WHERE

statement for any type that supports comparison and ordering:

SELECT t1.a, t2.a

FROM T as t1, T as t2

WHERE t1.a > t2.a

This WHERE statement clearly removes exact duplicates (since s connot equal to t if s > t). It also
removes duplicates up to orders since both (s, t) and (t, s) cannot be in the result since either s > t
or t > s. This result is symmetric in the sense that WHERE t1.a < t2.a also achieves the same goal.

To extend this idea to tables with multiple attributes, we just need to define a consistent comparison
between tuples rather than single attributes. We can use the idea of lexicographic ordering as used
in the indexing section of the course. This means that for two tuples (a1, a2) and (b1, b2), we first
compare on the first attribute—if there is a tie we proceed to the subsequent attribute.

(a1, a2) > (b1, b2) ≡ (a1 > b1) ∧ (a1 = b1 ∨ a2 > b2)

(a1, a2) < (b1, b2) ≡ (a1 < b1) ∧ (a1 = b1 ∨ a2 > b2)

Therefore, for the question above there are two acceptable WHERE statements:

WHERE (draw1.suit > draw2.suit

OR (draw1.suit = draw2.suit AND draw1.val > draw2.val))

WHERE (draw1.suit < draw2.suit

OR (draw1.suit = draw2.suit AND draw1.val < draw2.val))

So the solution is B and C.

3. (4 points) The total score of a two-card hand is simply the sum of the scores of the two cards. We want
to write a query over the Hand view that assigns the total score to each tuple in Hand. Which of the
following SQL queries results in the correct output. There may be zero, one, or more than one
correct answer.

A. SELECT t.suit1, t.val1, t.suit2, t.val2, SUM(score) AS score

FROM (

SELECT suit1, val1, suit2, val2, score1 AS score FROM Hand

UNION

SELECT suit1, val1, suit2, val2, score2 AS score FROM Hand

Page 3 of 14



) as t

GROUP BY t.suit1, t.val1, t.suit2, t.val2

B. SELECT suit1, val1, suit2, val2, SUM(COALESCE(score1, score2)) AS score

FROM Hand

GROUP BY suit1, val1, suit2, val2

C. SELECT h1.suit1, h1.val1, h2.suit2, h2.val2, h1.score1 + h2.score2 AS score

FROM Hand AS h1, Hand AS h2

WHERE h1.suit1 = h2.suit2 AND h1.val1 = h2.val2

D. SELECT suit1, val1, suit2, val2, score1 + score2 AS score

FROM Hand

GROUP BY suit1, val1, suit2, val2, score1, score2

Solution: D. For this question, it actually would suffice the run the following query:

SELECT suit1, val1, suit2, val2, score1 + score2 AS score

FROM Hand

This query is much simpler than those provided in the choices so the trick is to determine which
of provided queries is equivalent to this query under the assumptions laid out in the previous two
sections.

• Choice A is incorrect if there exists a record where score1 is equal to score2, this means that
the UNION statement will turn that into a single tuple and not aggregate properly.

• Choice B is incorrect because COALESCE takes the returns the first non-null value, this is not
the same as adding the two scores.

• Choice C is conceptually incorrect as it would create a new table where both val1 and val2 are
equal to each other.

• Choice D is correct because under the problem assumptions all hands are uniquely identified
by the suits and values of their cards. This means that the GROUP BY statement returns a
single tuple and there is no table aggregate in the SELECT statment—making it equivalent to
not using it at all.

Page 4 of 14



2 Heap Files

Assume that we have serialized a relation as an 8 MB heap file on disk without any header pages of any sort.
Further assume that file is divided into 64 KB pages (1 MB = 1000 KB). Answer the following questions
with the following important notes in mind.

• Reuse results: For each part of this question, whenever possible you should reuse the values calculated
in previous parts using capital letters, e.g. let A be your answer in part A, B be your answer in part
B, etc. Do not use the numerical value of previous parts in subsequent parts.

• Spare the arithmetic: You can leave arithmetic expressions unsimplified.

A. (1 point) How many pages are in the file? Remember the notes above!

Solution: The file takes up 8 MB (8000 KB) and one page holds 64 KB, so the file takes up
8000/64 = 125 pages.

B. (1 point) Imagine we want to add a page directory to the heap file. If 24 directory entries can fit on one
page, how many additional directory pages do we need for the file? Remember the notes above!

Solution: This question is poorly worded and caused a lot of confusion during the exam. For that
reason, we were very lenient on the answer.

The original intent of the question was to ask for the total number of directory pages. Since 24
entries fit on one page and we need one entry for each of A data pages, the total number of directory
pages is ⌈ A

24⌉.
However, the clarification given during the midterm specified that it should be the number of
directory pages beyond 1. For that reason we accepted both ⌈ A

24⌉ and ⌈ A
24 − 1⌉ as correct answers.

C. (1 point) Assume that at least one page in the file has space for a new record. In the worst case, how
many I/Os does it take to insert a new record into the relation and persist the changes to the file?
Remember the notes above!

Solution: Conceptually, we want to find a page with free space, update the page, and update its
directory page. To find the page with free space we have have to scan the directory pages, B I/Os.
To update the page we read it in then write it back out, 2 I/Os. To update the directory page, since
it’s already read into memory, we just need 1 I/O to write it back out. This is a total of B+3 I/Os.
If we consider B to be the “beyond-1” number of directory pages, the solution is B + 4 I/Os.

D. (2 points) In the worst case, if you are given the value of the primary key of an existing record, how
many I/Os does it take to update that record? Remember the notes above!

Solution: It was clarified during the exam that records were fixed length (so the size of an updated
record is the same size as the original record). To update a record in a heap file, you must scan the
entire file to find it, then update it and write it back out. The page directory is not involved in the
search for the record. This will take A+ 1 I/Os.

Page 5 of 14



E. (2 points) Now imagine we sort the file by the relation’s primary key. Given the value of the primary
key of an existing record, how many I/Os will it take to update that record in the worst case? Remember
the notes above!

Solution: It would only take log2(A) I/Os to find the record in a sorted file. However, in the worst
case, we update the column that the file is sorted on and have to end up shifting records on all A
pages. Therefore, this will take log2(A) + 2A I/Os in the worst case.

Page 6 of 14



3 B+-Trees

1. (1 point) What is the maximum fanout F of an order d B+-tree?

Solution: The maximum fan out is the maximum occupancy plus one, or 2d + 1, by definition.
Some students interpreted the question as asking how many entries can be in the leaf node, so we
also accepted 2d to account for this. (Moreover, we also accepted F+1 based on how F is interpreted
in the previous problem)

2. (2 points) Assume that each leaf can hold F data entries. What is the maximum number of data entries
that an order d B+-tree of height 5 can store? Note that a height 1 B+-tree only has a root node, and
a height 2 B+-tree has a root node and one layer of leaf nodes. Express your answer as a function of F

Solution: We are assuming that the leaf pages hold F = 2d+ 1 entries instead of the standard 2d.
At height 1, the root node is a leaf node and therefore the index holds F . At height 2, there is a
root node and its children are leaf nodes. The root node has a max fanout of F children and each
child is a leaf node that can hold max F entries. Therefore the index can hold F 2 total entries.
Generally, the tree holds Fh entries by similar justification and at height 5, the tree can hold up to
F 5 entries. We are accepting F 5, (2d+ 1)5 and any other fifth power of fanout

3. (2 points) Again, assume that each leaf can hold F data entries. What is the minimum number of I/Os
it will take to check if a data entry exists in a B+-tree with 1,000,000,000 (1× 109) records assuming we
have indexed the file with an order d B+-tree? Express your answer as a function of F

Solution: To check if a tree exists in a B+-tree with the minimum number of I/Os we assume that
the maximum number of entries are being stored in the inner and leaf nodes. Therefore there will

be 109

F leaf nodes. At every level we reduce the number of node we will look at by F−1
F due to the

binary search like properties of B+ trees. Therefore it will take us 1 + logF (
109

F ) I/Os to check if a
key exists in the tree.

Consider the following B+ tree of order 2.

..8 .13 .20. 25.

2

.

7

...

8

.

11

.

12

..

13

.

16

...

21

.

22

...

25

.

28

.

31

.

32

4. (1 point) How many nodes split when you insert 27?

Solution:

Page 7 of 14



• To insert 27, we follow the rightmost pointer in the tree from the root node because 27 >
8,27 > 13,27 > 20,25 > 20.

• We get to the leaf node containing (25, 28, 31, 32) and attempt to insert 27, but the leaf node
is at maximum capacity and the insertion breaks the occupancy invariant. Therefore we must
split the leaf into (25, 27) and (28, 32, 21) and copy up key 27 because this is a leaf node.

• We attempt to insert 27 into the parent node containing (8, 13, 20, 25) but the root is also at
maximum capacity. We split it into (8, 13) and (25, 28) pushing up key 20 because it is an
inner node. Our final tree looks like and we split two nodes

5. (1 point) After inserting 27 into the tree, you also insert 26. How many nodes split as a result of inserting
26?

Solution:

• To insert 26, we first look at the root node and follow the right pointer because 26 ≥ 20. We
then follow the middle pointer at the inner node below the root node because 26 > 25 but
26 < 28. We get to the leaf node containing (25, 27)

• We attempt to insert 26 into the leaf node containing (25, 27) and since 3 is less than the
occupancy invariant 4 we insert 26 and are done. We did not split any nodes.

6. (1 point) Assume that after inserting 26 and 27, you insert the keys 34, 35, 36, . . ., 100. After all these
insertions, what keys are in the leftmost leaf node?

Solution: You should be able to identify that we are only inserting keys into the right side of the
tree. This is similar to bulk loading in that the left leaf nodes will not be touched. Therefore, we
know that the leftmost leaf node will not be modified and will contain (2, 7) after the insertions to
the right side of the tree.

7. (1 point) In homework 2, which class was used to represented keys in a B+ tree? There is only one
correct answer.

A. Atom

B. DataBox

C. DbType

D. Datum

E. Scalar

F. AtomicVal

G. Value

H. None of the above.

Page 8 of 14



Solution: The answer is DataBox. None of the other classes exist at all in the homework.

Page 9 of 14



4 External Sorting

Assume pages are 2 KB large. Also assume you have a 12 KB buffer pool with six 2 KB frames.

1. (2 points) How many passes P would it take to externally sort an 84 page file? Include the initial sorting
pass and subsequent merging passes in your answer. You do not need to simplify your answer.

Solution: In general, we can sort N pages with B buffer pages in 1+
⌈
logB−1(⌈N

B ⌉)
⌉
passes. Here,

N = 84 and B = 6, so it takes 1 +
⌈
log5(⌈ 84

6 ⌉)
⌉
= 3 passes.

2. (2 points) What would be the total cost in I/Os for this external sort? Let P be the answer to part 1
(i.e. the number of passes). Leave your answer in terms of P . You do not need to simplify your answer.

Solution: In all P passes, we read and write all 84 pages of the file. Thus, the total cost is
2 ∗ 84 ∗ P = 168P = 504 IOs.

3. (2 points) What is the minimum number of additional buffer frames we require to reduce the number
of passes P (from part 1) by 1? You do not need to simplify your answer.

Solution: With 6 buffer frames, we can sort the file in three passes. In order to sort the file in two
passes, we need B buffer frames where B(B−1) ≥ 84. The smallest such B is 10. Thus, the number
of additional pages is 10− 6 = 4.

True or False

4. (1 point) Increasing the number of buffer pages does not affect the number of I/Os performed in Pass 0
of an external sort.

Solution: True. Regardless of the number of buffer pages, every pass of an external sort (including
Pass 0) performs the same number of IOs.

5. (1 point) Double buffering reduces the time it takes to sort records within a single page.

Solution: False. Double buffering allows a program to concurrently perform computations and
fetch data from disk. Once a page of data is resident in memory, double buffering will not help
speed up computation on it.

Page 10 of 14



5 Buffer Management

We are given an initially empty buffer pool with 4 buffer frames. Consider the following access pattern:

S E E M A W E S O M E P O S S U M

In the next two questions, you will need to evaluate the MRU replacement policy, keeping track of the pages
in the buffer pool, and the number of buffer pool hits.

1. (2 points) Using an MRU replacement policy, what are the four pages in the buffer pool after all accesses
are complete? Note: write the four pages in alphabetical order.

Solution: MPUW. See Figure 1.

2. (1 point) Using an MRU replacement policy, how many buffer pool hits are there?

Solution: 8. See Figure 1.

S * O * S * U

E * * * P

M * *

A W

Figure 1: MRU

We are again given an initially empty buffer pool with 4 frames. Now consider the following access pattern:

S E E M A W E S O M E

Note: This access pattern is different from the previous question. Do NOT include POSSUM in
your accesses.

In the next few questions, you will need to evaluate the clock policy, keeping track of the pages in the
buffer pool, the reference bits on the frames, and the number of buffer pool hits. Assume that we do not
increment the clock hand when we request a page that is already in the buffer pool. Only increment the
clock hand as part of a page replacement.

3. (2 points) Using the clock replacement policy, what are the four pages in the buffer pool after all accesses
are complete? Note: write the four pages in alphabetical order.

Solution: EMOS. See Figure 2.

4. (1 point) Using the clock replacement policy, what are the reference bits for each buffer pool page?
Note: make sure your reference bits correspond to the pages in alphabetical order. For
example, put 1110 if the first 3 pages have a reference bit set, but the last page does not.

Page 11 of 14



Solution: 1100. Before the last 2 accesses (M and E), the pages in the buffer pool are in the
following order W, E, S, O. The reference bits are set as 1011, and the clock arm is pointing at W.
Now, when we request M, the clock arm sets the reference bit for W to be 0, and moves onto E.
The reference bit for E is not set, so it replaces E with M and sets the reference bit for M to be 1
(so the buffer pool pages are now in the order W, M, S, O, and the reference bits are 0111). The
clock arm is now pointing at S. Now, when we request E, the clock arm advances until it reaches a
reference bit of 0, so it moves through S and O and sets their reference bits to 0. Then, the clock
arm points at W and replaces it with E. The final state is thus E, M, S, O, where E and M have
their reference bits set to 1.

5. (1 point) Using the clock replacement policy, how many buffer pool hits are there?

Solution: 2. See Figure 2.

S W E

E * * M

M S

A O

Figure 2: Clock

True or False.

6. (1 point) Assume page A is loaded into the buffer pool during a specific access pattern and is not evicted
at any point during the access pattern. Page A has a pin count of 7 at the end of all accesses. True or
False: Page A was accessed exactly 7 times during this access pattern.

Solution: False. At any point of an access pattern, the pin count of a page represents the number
of processes currently accessing the page, not the total number of times the page was accessed. Here
is a counterexample: Page A could’ve been requested 8 times. The pin count went up to 8, but then
a process was done using page A and decremented its pin count to 7.

7. (1 point) The buffer manager decides when to set the dirty bit of a page.

Solution: False. The file/index management code decides when to set the dirty bit of a page.

8. (1 point) A buffer pool has 101 frames, and you have an access pattern of 1000 accesses with the following
properties:

• 900 of the 1000 page accesses are to the same page P.

• The remaining 100 accesses are all to pages that are unique/different from each other and are not
to P.

Page 12 of 14



You repeat this access pattern many times. True or False: MRU would have fewer misses than LRU for
this access pattern.

Solution: False. Your buffer pool size is 101 frames. You only have 101 unique pages in your 1000
page access pattern. Thus, all the 101 pages in your access pattern can fit inside your buffer pool,
so you never have to evict any pages. This means any buffer replacement policy will have the same
number of misses (0 misses), since you never have to replace pages.

Page 13 of 14



Page 14 of 14


