
UNIVERSITY OF CALIFORNIA
Department of EECS, Computer Science Division

CS186 Garofalakis/Hellerstein
Fall 2005 Midterm Solutions

Midterm Solutions: Introduction to Database Systems

Problem 1: B+trees

(A) (3 points)
 Node affected: N7

New Node:

 (B) (6 points)

(C)
 a. (5 points)
1. Merge N3 and N4. (Move 519 to N3)
2. Merge N10 and N11, and move it to child of N3.

b. (1 point)
Insert any value in [520,600)

322 435

Problem 2: Query Languages
a. [4 points] Find blog entries posted by an author with realname ‘Ted’, and return the title,

timestamp and body of the entry.

SELECT e.title, e.timestamp, e.body
 FROM entries e, authors a
 WHERE e.authorid = a.authorid
 AND a.realname = ‘Ted’

b. [6 points] For each entry in the blog, return the same fields as in part (a), for those entries

with more than 2 comments.
SELECT e.title, e.timestamp, e.body
 FROM blogdb_entries e
 WHERE e.id IN
(SELECT c.entry_id
 FROM blogdb_comments c
 GROUP BY c.entry_id
 HAVING count(*) > 2);

OR

SELECT e.title, e.timestamp, e.body
 FROM blogdb_entries e, blogdb_comments c
 WHERE e.id = c.entry_id
 GROUP BY e.id, e.title, e.timestamp, e.body
HAVING count(*) > 2);

c. [6 points] The “parent_id” field in the comments table tracks the nesting of “comments

on comments”: when a new comment is posted in response to an old comment, the
parent_id of the new comment is the id of the old comment. (You may assume that
comments made directly on blog entries have parent_id = 0).

Find the id of each comment and the id of its “grandparent” comment; if it does not have
a grandparent, omit it from the answer.

SELECT kid.id, parent.parent_id
 FROM comments kid, comments parent
 WHERE kid.parent_id = parent.id
 AND parent.parent_id <> 0

OR

SELECT kid.id, grand.id
 FROM comments kid, comments parent,
 comments grand
 WHERE kid.parent_id = parent.id
 AND parent.parent_id = grand.id;

B. XML
a. [4 points] Write an XPATH query that returns all comments associated with entries

entitled “Midterm”.
//entry[@title=”Midterm”]/comment

b. [4 points] Write an XPATH query to find all comments that are a “grandparent” of some

other comment.

//comment[comment/comment]

c. [6 points] Using the XQuery language, write a FLWOR query that returns entries that
have more than 5 comments (nested or otherwise) and an author name containing
"Michael".

 FOR $e IN /entry[contains(./author, "Michael")]
 LET $c := $e//comment
 WHERE count($c) > 5
RETURN $e

3. Sorting. [8 points]
We would like to sort the tuples of a relation R(column1, column2, column3, column4) on a the sort key
(column1, column2, column4). The following information is known about the relation.

· The relation R contains 100,000 tuples.
· The size of a block on disk is 4000 bytes.
· The size of each R tuple is 400 bytes.
· The size of each field in R is 4 bytes.
· A record pointer is 4 bytes.

Answer the following questions based on the information above.

A. [4 points] If we want to sort in two passes (using only Phase 0 and Phase 1), we need to know the
minimum number of blocks B of main memory required. Provide (i) a formula for computing B correctly,
and (ii) also give an integer value of B that guarantees a 2-pass sort.

Part i:
2 points: either solutions received full credit
B(B-1) <= 10000
Or
1 + logB-1(10000/B) = 2

1 point for minor errors (e.g., forgot the ceiling, # pages did not appear anywhere).

Part ii:
2 points:
B = 101

B. [4 points] Assume we have sufficient memory to perform the sort in two passes. What is the cost, in
terms of number of disk I/Os, of sorting relation R? Include the cost of the writing the sorted file to the disk
in the end in your calculations.

4 points:
2 passes, read in and write out 10000 pages during each pass.
4 * 10000 = 40,000 I/Os

Problem 4: ER Diagrams

Teaches - a given Faculty member will only be able to teach a given Class during
one semester.
Classes - Classes with the same department and course number are no longer
distinct over different semesters.
Enrolled - a give Student will only be able to take a given Class during one
semester.

Recall that the primary keys of entities taken all together become primary keys in
the relation!

Problem 5: Query Optimization

Answer 5(a):
Since fromUrl is a foreign-key reference, the number of tuples in the join result (without any
selections applied) is |L| (referential integrity); thus, the selectivity of the join operator is |L|/(|P|*|L|)
= 1/|P| = 1/106.
Assuming uniformity (for both the pagesize and author attributes), the selectivities for the pagesize
and author conditions in the query are (5000-0)/(20000-0) = ¼ and 1/104, respectively.
Thus, assuming independence for the conditions, the overall selectivity is:

12

4
1025

10

1

020000

05000

||||

|| !
"=#

!

!
#

" LP

L

Answer 5(b):
The complete scan of webpages costs 10^5 page IOs. Assuming uniformity over pagesizes, the
number of webpages tuples that satisfy the pagesize condition in the query is:

66 10)
20000

1(
20000

20000
10 !"=

"
!

KK

Similarly, the number of relevant index pages that must be scanned during the index scan is (1-
K/20000)*10^3. Since we have an unclustered index and get no benefit from buffering, we must do a
data-page IO for each qualifying webpages tuple. Thus, the crossover value of K is determined by
the equation:

536 10)1010()
20000

1(=+!"
K

which gives K = 18002. Thus, for K>18002 the unclustered index scan solution is better (and vice
versa).

Answer (Extra Credit):
Consider the n=2 case. Assuming we evaluate selection 1 before selection 2, the overall CPU cost
(since the predicates are independent) is: |R|*c1 + |R|*s1*c2. (This is because only |R|*s1 tuples
“survive” selection 1.) Similarly, for the plan that evaluates selection 2 before selection 1, the cost is:
|R|*c2 + |R|*s2*c1. Thus, evaluating selection 1 first is a better strategy, iff

211122 csccsc !+>!+ or
11

1

21

2

s

c

s

c

!
>

!

In the general case, the optimal strategy is to evaluate the n selections in increasing order of the ci/(1-
si) ratio. Intuitively, this rule says we should evaluate selections in order of their cost/benefit ratio,
where cost is the per tuple cost , and benefit is the percentage of tuples they filter out (i.e. 1-
selectivity).

